Multipole Hair of Higher Dimensional Schwarzschild Black Holes

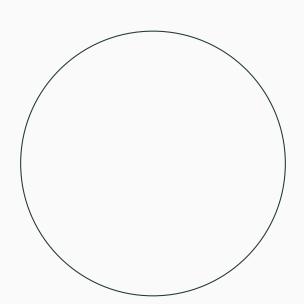
Based on arXiv:1907.07622 [gr-qc] (Journal of Mathematical Physics)

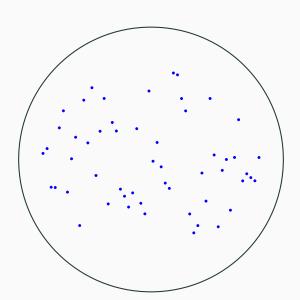
Matthew S. Fox

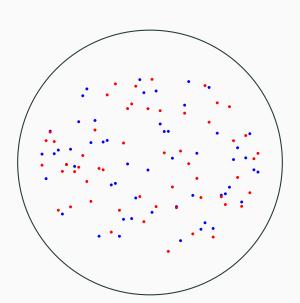
Harvey Mudd College, Claremont, CA msfox@g.hmc.edu

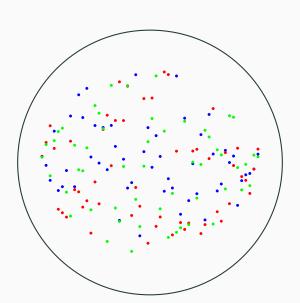
APS Far West Section, Stanford University

2 November 2019









$$g_{\mu\nu}=g_{\mu\nu}(M,Q,J)$$
, not $g_{\mu\nu}(\mathsf{blue},\mathsf{red},\mathsf{green},\dots)$

$$g_{\mu\nu}=g_{\mu\nu}(M,Q,J)$$
, not $g_{\mu\nu}(\mathsf{blue},\mathsf{red},\mathsf{green},\dots)$

No hair!

Let ${\mathcal M}$ be a d-dimensional spacetime with metric g

Let $\mathcal M$ be a d-dimensional spacetime with metric g Rigorously speaking, a d-dimensional black hole $\mathcal B_d$ is the set

Let ${\mathcal M}$ be a d-dimensional spacetime with metric g

Rigorously speaking, a d-dimensional black hole \mathcal{B}_d is the set

$$\mathcal{B}_d = \mathcal{M} -$$

Let ${\mathcal M}$ be a d-dimensional spacetime with metric g

Rigorously speaking, a d-dimensional black hole \mathcal{B}_d is the set

$$\mathcal{B}_d = \mathcal{M} - I^-(\mathcal{J}^+)$$

Let ${\mathcal M}$ be a d-dimensional spacetime with metric g

Rigorously speaking, a d-dimensional black hole \mathcal{B}_d is the set

$$\mathcal{B}_d = \mathcal{M} - \underbrace{I^-(\mathscr{J}^+)}_{\text{points in } \mathcal{M} \text{ where}}$$
light is not "caught" by BH

Let ${\mathcal M}$ be a d-dimensional spacetime with metric g

Rigorously speaking, a d-dimensional black hole \mathcal{B}_d is the set

$$\mathcal{B}_d = \mathcal{M} - \underbrace{I^-(\mathscr{J}^+)}_{\text{points in } \mathcal{M} \text{ where}}$$
light is not "caught" by BH

Theorem (Hawking, 1972). Assuming dominant energy condition,

$$\partial \mathcal{B}_4 \cong S^2$$

S. W. Hawking, Commun. Math. Phys. 25, 152 (1972).

Let ${\mathcal M}$ be a d-dimensional spacetime with metric g

Rigorously speaking, a d-dimensional black hole \mathcal{B}_d is the set

$$\mathcal{B}_d = \mathcal{M} - \underbrace{I^-(\mathscr{J}^+)}_{ ext{points in } \mathcal{M} \text{ where}}$$
light is not "caught" by BH

Theorem (Hawking, 1972). Assuming dominant energy condition,

$$\partial \mathcal{B}_4 \cong S^2$$

Of course,

$$\partial \mathcal{B}_4 \cong S^2 \implies \partial \mathcal{B}_d \cong S^{d-2}$$

S. W. Hawking, Commun. Math. Phys. 25, 152 (1972).

Theorem (Galloway *et al.*, 2006). Assuming dominant energy condition,

 $\partial \mathcal{B}_d$ admits metric of positive scalar curvature

G. J. Galloway and R. Schoen, Commun. Math. Phys. 266, 571 (2006)

R. Emparan and H. S. Reall, Living Rev. Relativ. 11, 6 (2008).

Theorem (Galloway *et al.*, 2006). Assuming dominant energy condition,

 $\partial \mathcal{B}_d$ admits metric of positive scalar curvature

Not very restrictive!

G. J. Galloway and R. Schoen, Commun. Math. Phys. 266, 571 (2006)

R. Emparan and H. S. Reall, Living Rev. Relativ. 11, 6 (2008).

Theorem (Galloway *et al.*, 2006). Assuming dominant energy condition,

 $\partial \mathcal{B}_d$ admits metric of positive scalar curvature

Not very restrictive!

Example (Black Saturn). 5D black hole \mathcal{B}_5 with horizon topology

$$\partial \mathcal{B}_5 \cong S^2 \times S^1$$

not precluded.

G. J. Galloway and R. Schoen, Commun. Math. Phys. 266, 571 (2006)

R. Emparan and H. S. Reall, Living Rev. Relativ. 11, 6 (2008).

Theorem (Galloway *et al.*, 2006). Assuming dominant energy condition,

 $\partial \mathcal{B}_d$ admits metric of positive scalar curvature

Not very restrictive!

Example (Black Saturn). 5D black hole \mathcal{B}_5 with horizon topology

$$\partial \mathcal{B}_5 \cong S^2 \times S^1$$

not precluded.

So, higher dimensional black holes not necessarily unique.

G. J. Galloway and R. Schoen, Commun. Math. Phys. 266, 571 (2006)

R. Emparan and H. S. Reall, Living Rev. Relativ. 11, 6 (2008).

Schwarzschild-Tangherlini (ST) Black Holes

S. Hwang, Geometriae Dedicata 71, 5 (1998).

Schwarzschild-Tangherlini (ST) Black Holes

$$g_{\text{ST}}(\mathrm{d}\mathbf{x},\mathrm{d}\mathbf{x}) = -\left(1 - \frac{M}{r^{d-3}}\right)\mathrm{d}t^2 + \left(1 - \frac{M}{r^{d-3}}\right)^{-1}\mathrm{d}r^2 + r^2\underbrace{\gamma(\mathrm{d}\varphi,\mathrm{d}\varphi)}_{S^{d-2}\text{ metric}}$$

S. Hwang, Geometriae Dedicata 71, 5 (1998).

Schwarzschild-Tangherlini (ST) Black Holes

$$g_{\text{ST}}(\mathrm{d}\mathbf{x},\mathrm{d}\mathbf{x}) = -\left(1 - \frac{M}{r^{d-3}}\right)\mathrm{d}t^2 + \left(1 - \frac{M}{r^{d-3}}\right)^{-1}\mathrm{d}r^2 + r^2\underbrace{\gamma(\mathrm{d}\varphi,\mathrm{d}\varphi)}_{S^{d-2}\text{ metric}}$$

Theorem (Hwang, 1998). All topologically-spherical, static, asymptotically-flat, and non-degenerate vacuum solutions to Einstein equations have ST geometry, $g_{\rm ST}$

S. Hwang, Geometriae Dedicata 71, 5 (1998).

Reissner-Nordström-Tangherlini (RNT) Black Holes

G. W. Gibbons, D. Ida, and T. Shiromizu, Phys. Rev. D 66, 044010 (2002).

Reissner-Nordström-Tangherlini (RNT) Black Holes

$$\begin{split} g_{\text{RNT}}(\mathrm{d}\mathbf{x},\mathrm{d}\mathbf{x}) &= -\left(1 - \frac{M}{r^{d-3}} + \frac{Q}{r^{2d-6}}\right)\mathrm{d}t^2 \\ &+ \left(1 - \frac{M}{r^{d-3}} + \frac{Q}{r^{2d-6}}\right)^{-1}\mathrm{d}r^2 + r^2\gamma(\mathrm{d}\varphi,\mathrm{d}\varphi) \end{split}$$

G. W. Gibbons, D. Ida, and T. Shiromizu, Phys. Rev. D 66, 044010 (2002).

Reissner-Nordström-Tangherlini (RNT) Black Holes

$$\begin{split} g_{\text{RNT}}(\mathrm{d}\mathbf{x},\mathrm{d}\mathbf{x}) &= -\left(1 - \frac{M}{r^{d-3}} + \frac{Q}{r^{2d-6}}\right)\mathrm{d}t^2 \\ &+ \left(1 - \frac{M}{r^{d-3}} + \frac{Q}{r^{2d-6}}\right)^{-1}\mathrm{d}r^2 + r^2\gamma(\mathrm{d}\varphi,\mathrm{d}\varphi) \end{split}$$

Theorem (Gibbons *et al.*, 2002). All topologically-spherical, static, asymptotically-flat, and non-degenerate electrovac solutions to Einstein-Maxwell equations have RNT geometry, $g_{\rm RNT}$

G. W. Gibbons, D. Ida, and T. Shiromizu, Phys. Rev. D 66, 044010 (2002).

Question: How to get RNT black hole from ST black hole?

Question: How to get RNT black hole from ST black hole?

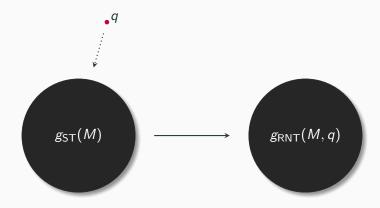
Question: How to get RNT black hole from ST black hole?

Answer:

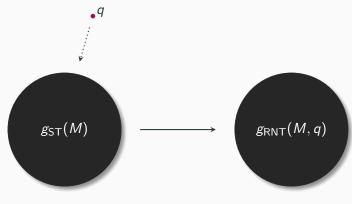
• q

Question: How to get RNT black hole from ST black hole?

Question: How to get RNT black hole from ST black hole?



Question: How to get RNT black hole from ST black hole?



Well, not exactly...

RNT black hole only has monopole charge,

RNT black hole only has monopole charge,

$$\Phi_{\mathsf{RNT}}(r) \propto \frac{1}{r^{d-2}}$$

RNT black hole only has monopole charge,

$$\Phi_{\mathsf{RNT}}(r) \propto \frac{1}{r^{d-2}}$$

However, potential after lowering a charge into ST black hole is

RNT black hole only has monopole charge,

$$\Phi_{\mathsf{RNT}}(r) \propto \frac{1}{r^{d-2}}$$

However, potential after lowering a charge into ST black hole is

$$\Phi(r) \propto \sum_{k,l,m} \alpha_{k,m,l} \underbrace{\left(\frac{1}{r}\right)^{k+m(d-3)}}_{\text{multipole terms ("hair")}}$$

RNT black hole only has monopole charge,

$$\Phi_{\mathsf{RNT}}(r) \propto rac{1}{r^{d-2}}$$

However, potential after lowering a charge into ST black hole is

$$\Phi(r) \propto \sum_{k,l,m} \alpha_{k,m,l} \underbrace{\left(\frac{1}{r}\right)^{k+m(d-3)}}_{\text{multipole terms ("hair")}}$$

But

$$\Phi_{\mathsf{RNT}}(r) \neq \Phi(r)$$

RNT black hole only has monopole charge,

$$\Phi_{\mathsf{RNT}}(r) \propto rac{1}{r^{d-2}}$$

However, potential after lowering a charge into ST black hole is

$$\Phi(r) \propto \sum_{k,l,m} \alpha_{k,m,l} \underbrace{\left(\frac{1}{r}\right)^{k+m(d-3)}}_{\text{multipole terms ("hair")}}$$

But

$$\Phi_{\mathsf{RNT}}(r) \neq \Phi(r) \implies \left[g_{\mathsf{ST}}(M) \to g(M,q) \neq g_{\mathsf{RNT}}(M,q) \right]$$

$$g(M,q) \neq g_{RNT}(M,q)$$

$$g(M,q) \neq g_{RNT}(M,q)$$

Theorem (Gibbons *et al.*, 2002). All **topologically-spherical**, **static**, **asymptotically-flat**, **and non-degenerate** electrovac solutions to Einstein-Maxwell equations have RNT geometry, g_{RNT}

$$g(M,q) \neq g_{RNT}(M,q)$$

Theorem (Gibbons *et al.*, 2002). All **topologically-spherical**, **static**, **asymptotically-flat**, **and non-degenerate** electrovac solutions to Einstein-Maxwell equations have RNT geometry, g_{RNT}

• g(M,q) is static (lower charge sufficiently slowly)

M. Rogatko, Phys. Rev. D 67, 084025 (2003); Phys. Rev. D 73, 124027 (2006).

$$g(M,q) \neq g_{RNT}(M,q)$$

Theorem (Gibbons *et al.*, 2002). All **topologically-spherical**, **static**, **asymptotically-flat**, **and non-degenerate** electrovac solutions to Einstein-Maxwell equations have RNT geometry, g_{RNT}

- g(M,q) is static (lower charge sufficiently slowly)
- g(M, q) is asymptotically-flat (make q sufficiently small)

M. Rogatko, Phys. Rev. D 67, 084025 (2003); Phys. Rev. D 73, 124027 (2006).

$$g(M,q) \neq g_{RNT}(M,q)$$

Theorem (Gibbons *et al.*, 2002). All **topologically-spherical**, **static**, **asymptotically-flat**, **and non-degenerate** electrovac solutions to Einstein-Maxwell equations have RNT geometry, g_{RNT}

- g(M,q) is static (lower charge sufficiently slowly)
- g(M, q) is asymptotically-flat (make q sufficiently small)
- g(M,q) is (most likely) non-degenerate (Rogatko, 2006)

M. Rogatko, Phys. Rev. D 67, 084025 (2003); Phys. Rev. D 73, 124027 (2006).

$$g(M,q) \neq g_{RNT}(M,q)$$

Theorem (Gibbons *et al.*, 2002). All **topologically-spherical**, **static**, **asymptotically-flat**, **and non-degenerate** electrovac solutions to Einstein-Maxwell equations have RNT geometry, g_{RNT}

- g(M,q) is static (lower charge sufficiently slowly)
- g(M, q) is asymptotically-flat (make q sufficiently small)
- g(M, q) is (most likely) non-degenerate (Rogatko, 2006)

Thus,

final state is not topologically spherical

M. Rogatko, Phys. Rev. D 67, 084025 (2003); Phys. Rev. D 73, 124027 (2006).

Acknowledgements

- Brian Shuve (Harvey Mudd College)
- Jason Gallicchio (Harvey Mudd College)
- Thomas Moore (Pomona College)