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No hair!
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Let M be a d-dimensional spacetime with metric g
Rigorously speaking, a d-dimensional black hole B, is the set
Bg=M—1-(gF"
d (/1)

!

points in M where
light is not “caught” by BH

Theorem (Hawking, 1972). Assuming dominant energy condition,

OB, = §2

Of course,
OBy = S% =& OBy = S92

S. W. Hawking, Commun. Math. Phys. 25, 152 (1972).
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Black Hole Topology in d > 4 Dimensional Spacetime

Theorem (Galloway et al., 2006). Assuming dominant energy
condition,

0By admits metric of positive scalar curvature
Not very restrictive!
Example (Black Saturn). 5D black hole Bs with horizon topology
OBs = 5% x St

not precluded.

So, higher dimensional black holes not necessarily unique.

G. J. Galloway and R. Schoen, Commun. Math. Phys. 266, 571 (2006)
R. Emparan and H. S. Reall, Living Rev. Relativ. 11, 6 (2008).
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Schwarzschild-Tangherlini (ST) Black Holes

-1
dr’+r?~y(dep, dp)
———

592 metric

M M

Theorem (Hwang, 1998). All topologically-spherical, static,
asymptotically-flat, and non-degenerate vacuum solutions to
Einstein equations have ST geometry, gsT

S. Hwang, Geometriae Dedicata 71, 5 (1998).
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Reissner-Nordstrom-Tangherlini (RNT) Black Holes

M Q
grNT(dx, dx) = — (1 ~ 3t r2d—6) dt*

M Q \*
alx <1_rd3+l’2d6> dr2—|—r2’y(dgo,d<,o)

Theorem (Gibbons et al., 2002). All topologically-spherical,
static, asymptotically-flat, and non-degenerate electrovac solutions
to Einstein-Maxwell equations have RNT geometry, grnT

G. W. Gibbons, D. Ida, and T. Shiromizu, Phys. Rev. D 66, 044010 (2002).
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Dropping Electric Charge into ST Black Hole: gst — grnt?

RNT black hole only has monopole charge,

1
(DRNT(r) X ﬁ

However, potential after lowering a charge into ST black hole is
1\ k+m(d-3)
CD(r) X Z QK. m,l <r)

k,l,m
multipole terms (“hair")

But

Prnt(r) £ O(r) = |gst(M) — g(M, q) # grnt(M, q) |

M. S. Fox, J. Math. Phys. 60, 102502 (2019).
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Electric Charge Disrupts Horizon Topology

g(M, q) # grnT(M, q)

Theorem (Gibbons et al., 2002). All topologically-spherical,
static, asymptotically-flat, and non-degenerate electrovac
solutions to Einstein-Maxwell equations have RNT geometry, grnT

e g(M,q) is static (lower charge sufficiently slowly)
e g(M,q) is asymptotically-flat (make g sufficiently small)
e g(M,q) is (most likely) non-degenerate (Rogatko, 2006)

Thus,
final state is not topologically spherical

M. Rogatko, Phys. Rev. D 67, 084025 (2003); Phys. Rev. D 73, 124027 (2006).
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