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Black Hole Topology in d ≥ 4 Dimensional Spacetime

Let M be a d-dimensional spacetime with metric g

Rigorously speaking, a d-dimensional black hole Bd is the set

Bd =M − I−(J +)

points in M where

light is not “caught” by BH

Theorem (Hawking, 1972). Assuming dominant energy condition,

∂B4 ∼= S2

Of course,

∂B4 ∼= S2 6=⇒ ∂Bd ∼= Sd−2

S. W. Hawking, Commun. Math. Phys. 25, 152 (1972).
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Black Hole Topology in d ≥ 4 Dimensional Spacetime

Theorem (Galloway et al., 2006). Assuming dominant energy

condition,

∂Bd admits metric of positive scalar curvature

Not very restrictive!

Example (Black Saturn). 5D black hole B5 with horizon topology

∂B5 ∼= S2 × S1

not precluded.

So, higher dimensional black holes not necessarily unique.

G. J. Galloway and R. Schoen, Commun. Math. Phys. 266, 571 (2006)

R. Emparan and H. S. Reall, Living Rev. Relativ. 11, 6 (2008).
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Uniqueness Theorems for ∂Bd ∼= Sd−2

Schwarzschild-Tangherlini (ST) Black Holes

gST(dx , dx) = −
(

1− M

rd−3

)
dt2+

(
1− M

rd−3

)−1

dr2+r2 γ(dϕ, dϕ)︸ ︷︷ ︸
Sd−2 metric

Theorem (Hwang, 1998). All topologically-spherical, static,

asymptotically-flat, and non-degenerate vacuum solutions to

Einstein equations have ST geometry, gST

S. Hwang, Geometriae Dedicata 71, 5 (1998).
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Dropping Electric Charge into ST Black Hole: gST → gRNT?

Question: How to get RNT black hole from ST black hole?

Answer:

gST(M)

q

gRNT(M, q)

Well, not exactly...
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Dropping Electric Charge into ST Black Hole: gST → gRNT?

RNT black hole only has monopole charge,

ΦRNT(r) ∝ 1

rd−2

However, potential after lowering a charge into ST black hole is

Φ(r) ∝
∑
k,l ,m

αk,m,l

(
1

r

)k+m(d−3)

︸ ︷︷ ︸
multipole terms (“hair”)

But
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Electric Charge Disrupts Horizon Topology

g(M, q) 6= gRNT (M, q)

Theorem (Gibbons et al., 2002). All topologically-spherical,

static, asymptotically-flat, and non-degenerate electrovac

solutions to Einstein-Maxwell equations have RNT geometry, gRNT

• g(M, q) is static (lower charge sufficiently slowly)

• g(M, q) is asymptotically-flat (make q sufficiently small)

• g(M, q) is (most likely) non-degenerate (Rogatko, 2006)

Thus,

final state is not topologically spherical

M. Rogatko, Phys. Rev. D 67, 084025 (2003); Phys. Rev. D 73, 124027 (2006).
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