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Computational Implications of D-CTCs

— Clone quantum states, distinguish non-orthogonal states, etc.
— Classical and quantum computers simulable in PSPACE
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Let M be some mathematical space, akin to RY.

Recall, a curve v is a map from points on R to points on M:
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A closed curve v is a similar map, except v self-connects:

R
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Suppose v depicts a trajectory through space and time:

time (R)

e

£ | IR
T ~ space (R®)

The curve v is timelike if every tangent vector to v points within
the direction of the light ray lines.
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A closed timelike curve is a curve v that looks something like:

time (R)

&
G )

- ~ space (R?)

Well, not quite... flat space-time geometry forbids CTCs.
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Key idea: Matter warps space-time geometry away from “flat”

Judicious matter distribution = CTC-admitting space-time?
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Still, useful to distinguish younger and older versions of system A
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QAL
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Is this true if there are interactions? (Yes!)
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Let C be a classical system

H = possible states of C
classical — #H ={|0),|1)}
(no superpositions!)

x,y €{0,1}

ii5)
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Consider the interaction U : [x)|y) — Ix © y) y Idg
older

IxGBy
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Older states must be the same

xXGy=y = x=0

This interaction allowed if and only if initial state of C is |0)
16



Paradox 2: Forbidden Time Travel

Consider the interaction U : |x)ly) — |y & 1) yOLIJ(f;ger
older

17



Paradox 2: Forbidden Time Travel

Consider the interaction U : |x)ly) — |y & 1) yOLIJ;ger
older

17



Paradox 2: Forbidden Time Travel

Consider the interaction U : |x)ly) — |y & 1) yOLIJ;ger
older

17



Paradox 2: Forbidden Time Travel

Consider the interaction U : |x)ly) — |y & 1) yOLIJ;ger
older

17



Paradox 2: Forbidden Time Travel

Consider the interaction U : |x)ly) — |y & 1) yOLIJ;ger
older

17



Paradox 2: Forbidden Time Travel

Consider the interaction U : |x)ly) — |y & 1) yOLIJ;ger
older

U
N c
ly 1)

17



Paradox 2: Forbidden Time Travel

Consider the interaction U : [x)|y) — |y & 1) younger
older
U
Y .
ly®1)

17



Paradox 2: Forbidden Time Travel

Consider the interaction U : |x)ly) — |y & 1) yOLIJ;ger
older

Older states must be the same

17



Paradox 2: Forbidden Time Travel

Consider the interaction U : |x)ly) — |y & 1) yOLIJ;ger
older

Older states must be the same

yel=y

17



Paradox 2: Forbidden Time Travel

ounge
Consider the interaction U : [x)]y) — |y & 1) y lllgg r
older

Iy@l

e
T |
\_/

Older states must be the same

y®l=y — 1=0

17
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Consider the interaction U : |x)ly) — |y & 1) yOLIJ;ger
older

Iy@l

e
T |
\_/

Older states must be the same

y®l=y — 1=0

States subject to U when traveling in time do not travel in time
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Change of Representation: Fock Basis

Define state of C = |particle #)

|0) <= C has 0 particles in it
|1) & C has 1 particle in it

Let C be the composite classical system

B

C and C’ are classical systems containing either 0 or 1 particle(s)
State of C is |x) [x @ 1) € {|0)|1),]1)]0)}, so C contains 1 particle
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Define C and C’ as follows

C = system will not traverse CTC in the future

C’ = system will traverse CTC in the future

Question: Does a particle ever traverse the CTC?
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Paradox 3: The Grandfather Paradox

Run C through the CTC with interaction yOLIJ(r;ger
older

U:X)Ix®ly) — Ixdy)xdydl)

U U

(crc)
N4

Older states must be the same
y=xbydl = x=1

Hence state of C is [1)[0), so no particle traverses the CTC
20
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Let @ be a quantum system

H = possible states of Q
quantum = H ={x|0)+BI1) : |« + |2 =1}

(superpositions!)
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Question: How to frame this condition quantum mechanically?
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The state of system Q after U and CTC is then
Trg [U(p @ o) U]
Older states do not change

o = Trg [U(p®c)uq (for all U)
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Deutsch’s consistency condition (DCC)
o= Tro [U(pm)w} (1)

Important Question: Does (1) constrain p?

Deutsch’s Answer: No!
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Deutsch’s Consistency Condition (DCC)

younger

Proof Idea older

Define an operator S by
S(x) =Trg [U(p @ %) U]
* is an “older state” of p

Deutsch showed S has a fixed point for all p

l.e., for every p and unitary U there exists a state * such that
Sx) =« (QED)

Question: Does D-CTC model resolve classical paradoxes?

D. Deutsch, Phys. Rev. D 44, 10, 3197 (1991)
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U= Y  Ix&y)ly) (xl{yl

x,y€{0,1}

DCC ultimately implies

p= %I+ (v10) (1 +y*11) o) (0<hP<1)
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U= ) IxeyixeyoLly)xlixe 1yl

x,y €{0,1}
U
U
p=p2p’ o
If initial state of Q is the classically forbidden 10) |1), DCC implies
1
p=;I
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Resolution to Paradox 3

For initial state |0) |1) = |01), DCC also implies older state of Q is

5 = (100} (00] + 1) {11)
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Quantum Implications of D-CTCs

Quantum State Cloning

D. Ahn, T. C. Ralph, and R. B. Mann, arXiv:1008.0221 [Gr-Qc, Physics:Hep-Th, Physics:Quant-Ph] (2010)
D. Bacon, Phys Rev. A 70, 032309 (2004)
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Given quantum states ), |d), there exists procedure U such that

U:) o) — ) )

Distinguish Non-orthogonal States

Suppose (P|d) € {0,1}. Distinguish p) from |b) via cloning.

Insecure Quantum Cryptography

BB84 and B92 insecure. Entanglement-based procedures still safe.
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Main Punchline

BQPctc = Pcrc

l.e., quantum and classical computing identical in presence of CTCs

Corollary

Computational advantages of quantum computers over classical
computers are a function of space-time (since CTCs manifest from

space-time curvature)
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