# Bell's Theorem and Nonlocal Glames

Matthew Fox

### Slides available at:



(www. MatthewfoxPhysics. com/research/talks/018.Pdf)

#### The Nobel Prize in Physics 2022



© Nobel Prize Outreach. Photo Stefan Bladh

Alain Aspect
Prize share: 1/3



© Nobel Prize Outreach. Photo: Stefan Bladh

John F. Clauser Prize share: 1/3



© Nobel Prize Outreach. Photo: Stefan Bladh

Anton Zeilinger
Prize share: 1/3

The Nobel Prize in Physics 2022 was awarded jointly to Alain Aspect, John F. Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science"

#### $MIP^* = RE$

Zhengfeng Ji\*1, Anand Natarajan†2,3, Thomas Vidick‡3, John Wright§2,3,4, and Henry Yuen¶5

<sup>1</sup>Centre for Quantum Software and Information, University of Technology Sydney
 <sup>2</sup>Institute for Quantum Information and Matter, California Institute of Technology
 <sup>3</sup>Department of Computing and Mathematical Sciences, California Institute of Technology
 <sup>4</sup>Department of Computer Science, University of Texas at Austin
 <sup>5</sup>Department of Computer Science and Department of Mathematics, University of Toronto

November 7, 2022

#### Abstract

We show that the class MIP\* of languages that can be decided by a classical verifier interacting with multiple all-powerful quantum provers sharing entanglement is equal to the class RE of recursively enumerable languages. Our proof builds upon the quantum low-degree test of (Natarajan and Vidick, FOCS 2018) and the classical low-individual degree test of (Ji, et al., 2020) by integrating recent developments from (Natarajan and Wright, FOCS 2019) and combining them with the recursive compression framework of (Fitzsimons et al., STOC 2019).

An immediate byproduct of our result is that there is an efficient reduction from the Halting Problem to the problem of deciding whether a two-player nonlocal game has entangled value 1 or at most  $\frac{1}{2}$ . Using a known connection, undecidability of the entangled value implies a negative answer to Tsirelson's problem: we show, by providing an explicit example, that the closure  $C_{qa}$  of the set of quantum tensor product correlations is strictly included in the set  $C_{qc}$  of quantum commuting correlations. Following work of (Fritz, Rev. Math. Phys. 2012) and (Junge et al., J. Math. Phys. 2011) our results provide a refutation of Connes' embedding conjecture from the theory of von Neumann algebras.

Let S be Some Physical System with Measurable Properties A, B, and, C.

| 5        | A      | B          | C                   |
|----------|--------|------------|---------------------|
| Cas      | Speed  | Color      | Position            |
| Star     | Mass   | Luminosity | Angular<br>Momentum |
| Electron | X-SPin | Y-spin     | Z-Spin              |

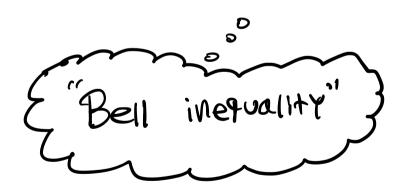
Measure Properties A, B, and C of S Many times and Collect Statistics:

$$N_s(A,B,C) =$$
# of times S has  $N_s(A,B,C) =$ # of times S has  $N_s(A,B,C) =$ # of times S has  $N_s(A,B,C) =$ # roperties A, B, and NOT C,

•

Theorem: Y systems S with Properties A, B, and C, it holds that

$$N_s(A, \overline{B}) + N_s(B, \overline{c}) > N_s(A, \overline{c})$$



Theorem: 
$$N_s(A, \overline{B}) + N_s(B, \overline{c}) \ge N_s(A, \overline{c})$$

Proof:  $RHS = N_s(A, \overline{c})$ 
 $= N_s(A, B, \overline{c}) + N_s(A, \overline{B}, \overline{c})$ 

LHS =  $N_s(A, \overline{B}) + N_s(B, \overline{c})$ 
 $= N_s(A, \overline{B}, c) + N_s(A, \overline{B}, \overline{c})$ 
 $+ N_s(A, \overline{B}, \overline{c}) + N_s(\overline{A}, \overline{B}, \overline{c})$ 
 $= N_s(A, \overline{B}, c) + N_s(\overline{A}, \overline{B}, \overline{c}) + RHS$ .

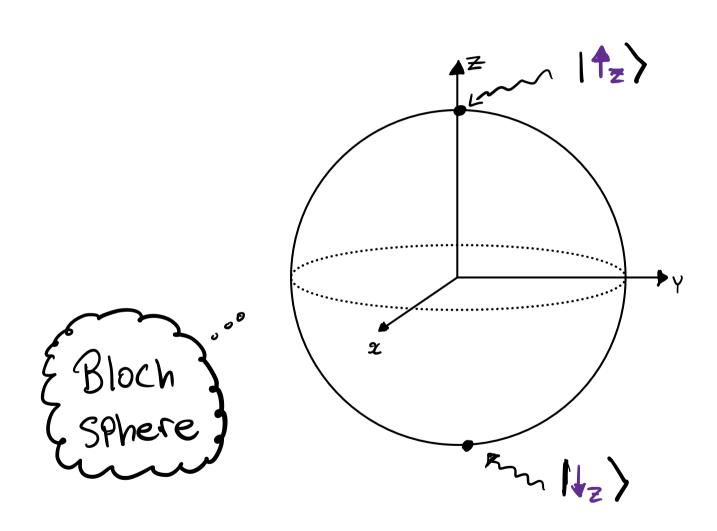
Hence,

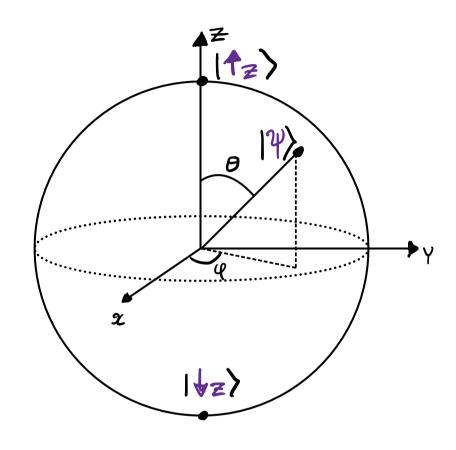
LHS  $\ge RHS$ .

Quantum Mechanics Can Violate this inequality! Consider System 5 consisting of electrons e, ea such that:

State(e<sub>1</sub>,e<sub>2</sub>) = 
$$\frac{1}{\sqrt{2}}$$
 (|\frac{1}{z}\frac{1}{z}\rightarrow + |\frac{1}{z}\frac{1}{z}\rightarrow + |\frac{1}{z}\rightarrow + |\fra

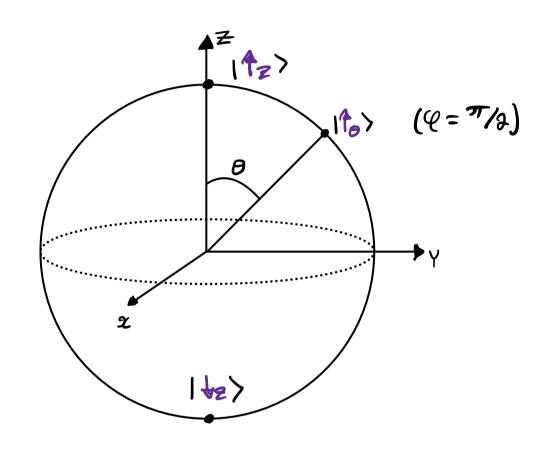
## "Spin of e, along Z-axis"





$$|\psi\rangle = \cos\frac{\theta}{2}|\uparrow_{z}\rangle + e^{i\theta}\sin\frac{\theta}{2}|\downarrow_{z}\rangle$$

"Spin of e, along o-axis"



$$|\uparrow_{\theta}\rangle = \cos\frac{\theta}{2}|\uparrow_{z}\rangle + \sin\frac{\theta}{2}|\downarrow_{z}\rangle$$

$$|\downarrow_{\theta}\rangle = \sin\frac{\theta}{2}|\uparrow_{z}\rangle - \cos\frac{\theta}{2}|\downarrow_{z}\rangle$$

#### Claim: If

and

$$N_s(A, \overline{B}) + N_s(B, \overline{c}) > N_s(A, \overline{c}),$$

then

$$\frac{1}{2} \ge 1$$
.

Conclude: QM Violates the Bell inequality!

Run experiment M times.

#### Then:

$$N_{s}(A, \overline{B}) = M \cdot P_{r}[A, \overline{B}]$$

$$= M \cdot P_{r}[A | \overline{B}] P_{r}[\overline{B}].$$

But 
$$B = SPin \text{ of } e_{\theta} \text{ along } \Theta - \alpha Xis$$

$$P_{r} \lceil \overline{B} \rceil = P_{r} \lceil S + \alpha t e(e_{\theta}) \neq | \uparrow e_{\theta} \rangle \rceil$$

= 
$$1 - Pr[State(e_{\theta}) = |\uparrow_{\theta}\rangle]$$
.

Recall,

State(e<sub>1</sub>,e<sub>2</sub>) = 
$$\frac{1}{\sqrt{2}}$$
 ( $|\uparrow_z|\uparrow_z\rangle + |\downarrow_z|\downarrow_z\rangle$ )
$$= \frac{1}{\sqrt{2}} (|\uparrow_e\uparrow_e\rangle + |\downarrow_e\downarrow_e\rangle)$$

Therefore,

$$P_{r}[State(e_{\theta}) = |\uparrow_{\theta}\rangle] = P_{r}[State(e_{1},e_{\theta}) = |\uparrow_{\theta}\uparrow_{\theta}\rangle]$$

$$= \frac{1}{2}.$$

 $\Rightarrow \rho_r \lceil \overline{8} \rceil = \frac{1}{2}$ 

Then:

$$N_{s}(A, \overline{B}) = M \cdot P_{r}[A | \overline{B}] P_{r}[\overline{B}].$$

$$= \frac{M}{\partial} P_{r}[A | \overline{B}]$$

Recall:

50:

$$P_{r}[A \mid \overline{B}] = P_{r}[State(e_{1}) = |\uparrow_{z}\rangle \mid State(e_{0}) = |\downarrow_{0}\rangle]$$

$$= SiN^{3} \frac{\Theta}{2} \quad \text{or} \quad |\uparrow_{e}\rangle = SiN^{\frac{\Theta}{2}} |\uparrow_{z}\rangle - cos \frac{\Theta}{2} |\downarrow_{z}\rangle$$

S = Maximally entangled electrons  $e_1$  ex A = Spin of  $e_1$  along z-axis B = Spin of  $e_2$  along  $\theta$ -axis C = Spin of  $e_3$  along  $2\theta$ -axis

$$N_{s}(A, \overline{B}) + N_{s}(B, \overline{c}) > N_{s}(A, \overline{c}).$$

$$\frac{M}{2} \sin^{2} \frac{\partial}{\partial} \qquad \frac{M}{\partial} \sin^{2} \frac{\partial}{\partial} \qquad \frac{M}{\partial} \sin^{2} \frac{\partial}{\partial}$$

Left with the inequality

$$\frac{M}{a} \sin^2 \frac{\Theta}{a} + \frac{H}{a} \sin^2 \frac{\Theta}{a} > \frac{M}{a} \sin^2 \Theta$$



$$2 \sin^2 \frac{\theta}{\theta} \geqslant \sin^2 \theta$$

Q: Is this true for all 0?

A: No! Take 0<0<<1 So that  $\sin \theta \simeq \theta$ .

Then,

$$\frac{1}{a} \geq 1$$

Contradiction!

## (A Version of) Bell's Theorem:

```
If S = Maximally entangled electrons eigen A = Spin of eigen along z-axis <math>B = Spin of eq along \Theta-axis (02041) C = Spin of eq along 20-axis then N_s(A, B) + N_s(B, C) + N_s(A, C).
```

Let's 25 back...

Theorem:  $\forall$  systems S with Properties A, B, and C, it holds that

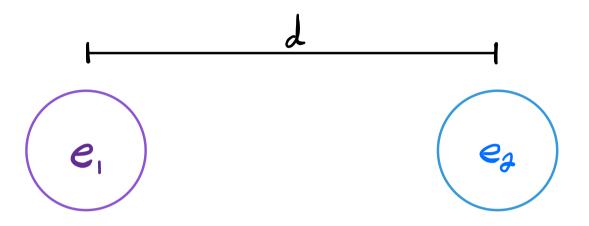
 $N_s(A, \overline{B}) + N_s(B, \overline{c}) > N_s(A, \overline{c})$ 

### Belis Theorem:

```
If
     5 = Maximally entangled electrons energy
     A = Spin of e, along z-axis
     B = Spin of ex along 0-axis (02041)
     c = spin of eq along 20-axis
then
     N_{\epsilon}(A, \overline{B}) + N_{\epsilon}(B, \overline{c}) < N_{\epsilon}(A, \overline{c})
```

### Corollary:

- · Maximally entangled electrons cannot have definite Z, O, and 20-Spin Simultaneously.
- . I.e., there are no "local hidden variables".



State(e<sub>1</sub>,e<sub>2</sub>) = 
$$\frac{1}{\sqrt{2}}$$
 ( $\uparrow_z \uparrow_z \rangle + |\downarrow_z \downarrow_z \rangle$ )
$$= \frac{1}{\sqrt{2}} \left( |\uparrow_e \uparrow_e \rangle + |\downarrow_e \downarrow_e \rangle \right)$$

Independent of d => Nonlocality.

Q: Is lesson of Beli's theorem that QM is nonlocal?

A: Maybe ...

Hidden Assumption: Measurements have one outcome.

Q: Is that reasonable?

### Everettian (Many Worlds) PM

- . Take Seriously that everything is quantum.
- Measure electron e spin with detector  $\mathfrak{D}$  and human H in the room:

State initial (e, D, H) = 
$$(K|\uparrow\rangle + \beta|\downarrow\rangle)$$
 | ready > | ready >

State<sub>final</sub> (e, D, H) = 
$$\kappa$$
 | 1 > | D says "1" > | H sees "4" >   
+  $\beta$  | 1 > | D says "1" > | H sees "1" >

Each branch a world

Clauser, Horne, Shimony, Holt

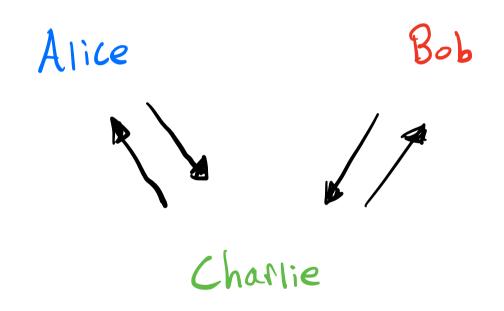
The CHSH inequality

and

Nonlocal Games

### CHSH and Nonlocal Games

. Exploit Bell inequality for Computational Speedup.



Note: No Communication between Alice and Bob!

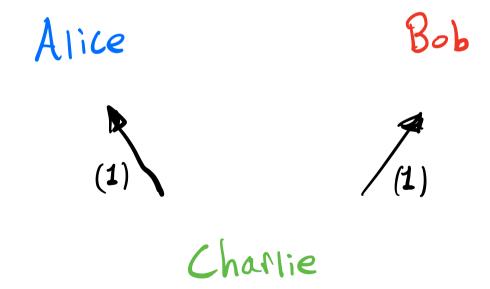
Stage 0 (before game begins):

· Alice, Bob — in Collaboration — Choose Boolean random Variables

- · Their Strategy,
- Denote  $a_{x} = a(x)$ ,  $b_{y} = b(y)$ .

#### Stage 1:

- · Charlie indefendently and Uniformly selects x, y \( \xi\_0, 1\}.
- · Sends & to Alice, Y to Bob



#### Stage 2:

using their strategy,

- · Alice Chooses of E {0,1}
- · Bob chooses by E {0,1}

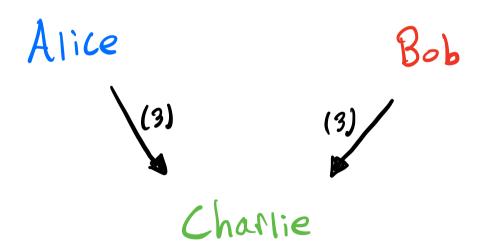
(2) Alice

Bob (2)

Charlie

### Stage 3:

- · Alice Seuds Charlie ax
- · Bob Sends Charlie by



### Stage 4:

· Charlie Computes

$$a_{\infty} \oplus b_{\gamma} = a_{\infty} + b_{\gamma} \pmod{2}$$

. Charlie declares

- "win" if 
$$a_x \oplus b_y = x Y$$

Alice

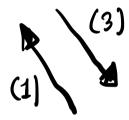
Bob

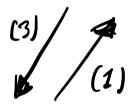
Charlie (4)

# The Noviocal XOR Game (a.H.a. CHSH Game)

(2) Alice

Bob (2)





Winning Condition:  $\alpha_x \oplus b_y = xy$ .

Q: What strategy Maximizes

$$\rho_{win} = \rho_r \left[ a_x \oplus b_y = xy \right] ?$$

## Winning Table:

| X | Y | Winning<br>Condition    |  |
|---|---|-------------------------|--|
| 0 | 0 | a, 0 b0 = 0             |  |
| 0 | l | a <sub>0</sub> ⊕ b₁ = 0 |  |
| 1 | O | 41 1 po = 0             |  |
| l | ı | 0-1 0 b1 = 1            |  |

· Can they do better?

Claim: Oftimal 
$$P_{win} < 1$$
.

Proof: Suppose not. Then  $\exists$  functions

 $a: \{0,1\} \longrightarrow \{0,1\}$ 
 $b: \{0,1\} \longrightarrow \{0,1\}$ 

Such that:

 $a_0 \oplus b_0 = 0$ 
 $a_1 \oplus b_0 = 0$ 
 $a_1 \oplus b_0 = 0$ 
 $a_1 \oplus b_1 = 1$ 

But then:

 $1 = 0 \oplus 0 \oplus 0 \oplus 1$ 
 $= \sum_{x,y} a_x \oplus b_y = 2(a_0 \oplus a_1 \oplus b_0 \oplus b_1)$ 
 $= 0$ . Run Contradiction!

## Conclusion: Optimal Strategy Necessarily Probabalistic.

Define 
$$A_{x} = (-1)^{a_{x}}$$
,  $B_{y} = (-1)^{b_{y}} \in \{-1, 1\}$ 

| x | Y | Winning<br>Condition | Pwin1xy  | IE[AzBy]                    |
|---|---|----------------------|----------|-----------------------------|
| 0 | 0 | A. B. = 1            | Pwin 100 | Pwintos + (-1) (1- Pwintoo) |
|   |   |                      | _        | = 2 Pwin100 -1              |
| 0 | 1 | A. B. = 1            | Pwinloi  | 2 Pwinter -1                |
| i | 0 | A, B, = 1            | Pwinlio  | 29win110 -1                 |
| 1 | 1 | A, B, =-1            | Pwintn   | 1 - apwinln                 |

Define
$$C = A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1$$

$$Claim: |E[C] = 8 P_{win} - 4.$$

$$Proof: |E[C] = 2(P_{win|oo} + P_{win|o1} + P_{win|10} + P_{win|11}) - 4.$$
Since
$$P_{c}(\alpha = 0) = P_{c}(\alpha = 1) = P_{c}(\gamma = 0) = P_{c}(\gamma = 1) = \frac{1}{2},$$

$$by |aw| op |total| |Probability,$$

$$P_{win} = \sum_{x,y} P_{win|xy} P_{c}(\alpha, y)$$

$$= \sum_{x,y} P_{win|xy} P_{c}(\alpha, y)$$

$$= \sum_{x,y} P_{win|xy} P_{c}(\alpha, y)$$

$$= \frac{1}{4} \sum_{x,y} P_{win|xy} \Rightarrow |E[C] = 8 P_{win} - 4.$$

### Proof: Notice

• 
$$A_0 = A_1 \implies A_0 + A_1 = \pm 2$$
,  $A_0 - A_1 = 0$ 

$$A_0 \neq A_1 \implies A_0 + A_1 = 0, A_0 - A_1 = \pm 2$$

• 
$$C = A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1$$
  
=  $(A_0 + A_1) B_0 + (A_0 - A_1) B_1$ 

Therefore,

$$C = \pm \lambda \implies |C| = \lambda$$

and so

Altogether,

Among "good" Strategies for which Puin > =,

Therefore, for any "good" strategy,



Q: Can Alice and Bob do better if they use a quantum strategy?

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left( |0\rangle \rangle - |1\rangle \rangle \right)$$

Alice Bol



Charlie



Stage 0 (before game begins):

- · Alice, Bob in Collaboration Choose Measurement operators
  - · MA (x)
  - $M_{B}(Y)$

and measure their side of 147.

· Their quantum Strategy.

Claim: 3 quantum Strategy such that Pwin ~ 85%.

## Proof:

Warning: Some Serious Moth ahead!

#### Des/Claim:

The Pauli Matrices are

$$\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

and satisfy, for all injeglia, 33,

$$\sigma_i \sigma_j = \delta_{ij} I + i \sum_{k} \epsilon_{ijk} \sigma_k$$

Levi-Civita
Symbol

Homecker

delta  $3x3$  identity

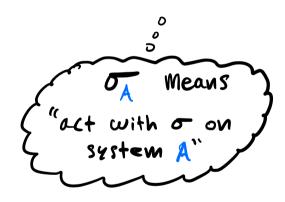
matrix

(For Proof, See Nielsen and Chuang)

Claim: Let  $\sigma$  be any Pauli Matrix and Write  $|\Psi^-\rangle = \frac{1}{\sqrt{2}} \left( |0\rangle_A |1\rangle_B - |1\rangle_A |0\rangle_B \right)$ .

Then,

$$\sigma_{A} | \Psi^{-} \rangle = - \sigma_{B} | \Psi^{-} \rangle$$



(For Proof, See Nielsen and Chuang)

Let

• 
$$\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3),$$
 "vector of matrices"

• 
$$\hat{R} = (R_1, R_3, R_3) \in \mathbb{R}^3$$
 (unit Vector)

• 
$$\hat{S} = (S_1, S_3, S_3) \in \mathbb{R}^3$$
 (unit Vector)

Then

$$A(\hat{R}) = \vec{\sigma}_{A} \cdot \hat{R} = R_{1} \sigma_{A1} + R_{2} \sigma_{A2} + R_{3} \sigma_{A3}$$

$$= \sum_{i} R_{i} \sigma_{Ai}$$

$$B(\hat{S}) = \vec{\sigma}_{B} \cdot \hat{S} = S_{1} \sigma_{B1} + S_{\theta} \sigma_{B2} + S_{3} \sigma_{B3}$$

$$= \sum_{i} S_{i} \sigma_{Bi}$$

• The vectors  $\hat{R}$  and  $\hat{S}$  determine the function stratery (Measurement operators).

Proof: By Lefinition (in QM):

$$\begin{aligned} \mathsf{IE}\big[\mathsf{A}(\widehat{\ell})\,\mathsf{B}(\widehat{s})\big] &= \langle \Psi^{\scriptscriptstyle{\mathsf{T}}}|\,\mathsf{A}(\widehat{\ell})\,\mathsf{B}(\widehat{s})\,|\,\Psi^{\scriptscriptstyle{\mathsf{T}}}\rangle \\ &= \langle \Psi^{\scriptscriptstyle{\mathsf{T}}}|(\overrightarrow{\sigma_{\mathsf{A}}}\cdot\widehat{\ell})\big(\overrightarrow{\sigma_{\mathsf{B}}}\cdot\widehat{s}\big)|\,\Psi^{\scriptscriptstyle{\mathsf{T}}}\rangle. \end{aligned}$$

But for any 
$$\sigma$$
,
$$\sigma_{A} |\Psi^{-}\rangle = -\sigma_{B} |\Psi^{-}\rangle.$$
(before)

Therefore,

$$\begin{aligned} \operatorname{IE}\left[A(\widehat{R})B(\widehat{S})\right] &= -\langle \Psi^{-}|(\overrightarrow{\sigma_{A}}\cdot\widehat{R})(\overrightarrow{\sigma_{A}}\cdot\widehat{S})|\Psi^{-}\rangle. \\ &= -\sum_{i \neq j} R_{i}S_{j} \langle \Psi^{-}|\sigma_{A_{i}}\sigma_{A_{j}}|\Psi^{-}\rangle. \end{aligned}$$

Proof (cont.): But recall

$$\sigma_i \sigma_j = \delta_{ij} \mathbb{I} + i \sum_{k} \mathcal{E}_{ijk} \sigma_k$$

Therefore,

$$\mathbb{E}\left[A(\hat{\ell})B(\hat{s})\right] = -\sum_{i,j} R_i S_j \left\langle \Psi^{-} | \sigma_{A_i} \sigma_{A_j} | \Psi^{-} \right\rangle$$

$$= -\sum_{i,j} R_i S_j \langle \Psi^* | (S_i, I + i \sum_{k} \mathcal{E}_{ijk} \sigma_{Ak}) | \Psi^* \rangle$$

$$= -\sum_{i} R_{i}S_{i} \langle \Psi^{-}|\Psi^{-}\rangle$$

$$=-\hat{\mathcal{R}}\cdot\hat{\mathcal{S}}$$

## Alice and Bob's Quantum Strategy

#### Alice:

• If 
$$x = 0$$
,

→ measure

$$A_o = \overrightarrow{\sigma_A} \cdot \widehat{R}_o$$

→ Measure

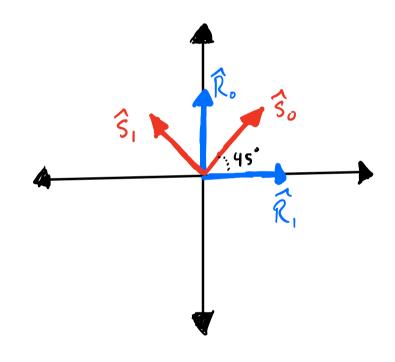
$$A_1 = \overrightarrow{\sigma_A} \cdot \widehat{R}_1$$

→ measure

$$\mathcal{B}_{o} = \overrightarrow{\sigma_{\beta}} \cdot \widehat{\mathcal{S}}_{o}$$

→ measure

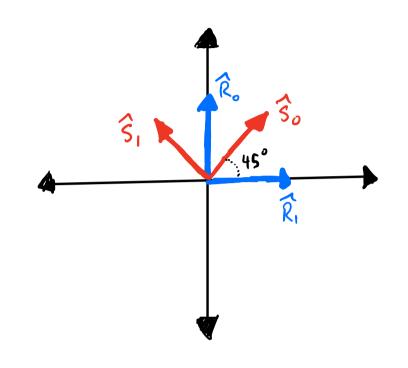
$$\beta_1 = \overrightarrow{\sigma_{\beta}} \cdot \widehat{\varsigma}_1$$



#### Then,

• IE[A, Bo] = - 
$$\frac{1}{\sqrt{2}}$$

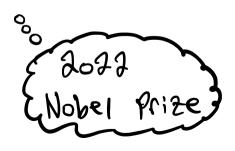
• IE 
$$[A, B_1] = +\frac{1}{\sqrt{2}}$$



So, with this strategy,

We just proved  $\exists$  quantum strategy such that  $||E[c]| = 2\sqrt{2}.$  But earlier we proved the CHSH inequality:  $||E[c]| \leq 2.$ 

Quantum Mechanics Violates the CHSH inequality!



Earlier we also Proved

Among "good" Strategies for which Puin > =,

Therefore, our quantum strategy lives

$$P_{win} = \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 85\%$$

Conclude: QM Provaby outlerforms CM in XOR nonlocal game!

# Thank You!

Slides ~

