Part II:

The Abelian Hidden Subgroup Problem is a Holy Grail

Def: A group is a Pair (G., .), where

- (a) G is a non-empty set,
- (b) ·: GX G1 -> G1,

Such that:

(i) Ya,b,CEG,

$$(a \cdot b) \cdot C = a \cdot (b \cdot c)$$

(associativity)

(iii) JeEG S.t. YOEG,

(Ytitnabi E)

(iii) YaEG, 3bEG S.t.

(zerrevni E)

Ex:

- (乙,+)
- · (KZ,+)
- · (R, +)
- · (IR\ {0}, X)
- $\mathbb{Z}_{n} := (\{0,1,...,n-1\}, + (mod n))$
- · (7/1/2) = ({o,1,...,n-i}, x (mod n))

Quiz: Is (7/1,X) a group?

Def: A group
$$(G, \cdot)$$
 is abelian iff $\forall a, b \in G$, $a \cdot b = b \cdot a$ (commutativity).

- 1. (2,+)
- 2. (KZ,+)
- 3. (R, +)
- 4. (IR\ {0}, X)
- 5. $\mathbb{Z}_n := (\{0,1,...,n-1\}, + (\text{Mod }n))$
- 6. (Z/nZ) = ({o,1,...,n-1}, x (mod n))

Def: Let (G1, ·) be a group and H=G1 a subset. We call (H1. ·) a subgroup of G1, written

 $H \leq G_1$

iff (H, .) is a group.

Quiz: Which is true, which is false, and why?

- 1. $(\mathbb{Z},+) \leq (\mathbb{R},+)$
- 2. (Z,+) < (KZ,+), K+1

Def: Let H=G for some group (G, .). The left cosets of H in G are the sets

9H := {9h | heH} for 9EG.

The right cosets of H in G are the sets

Hq := {hq | h EH} for gEG.

Quiz: For which groups (G1.) is it quaranteed that 49 EG1,

gH = Hg

i.e., that

left cosets = right cosets?

Def: Let (G,·) be a group. A set $A \subseteq G$ generates G iff $\forall g \in G$, $\exists \alpha_1, ..., \alpha_n \in A$ s.t.

g = a, a, ... a.

A is called a generating Set.

Quiz: Give a generating set for (72,+).

Def: Let (G,.) be a group, H ≤ G, and X a Set. A function f: G -> X hides H iff 49,192 EG, $f(g_1) = f(g_2) \iff g_1H = g_2H$

"f is Constant on the Cosets of H, but different on different cosets of H."

EX:

- · Group = ({o,1}, +)
- $f: \{0,1\}^{n} \longrightarrow \{0,1\}$ s.t. f = 0.
- . Then, f hides ({0,13", +) < ({0,13", +).

Quiz: Why?

Claim: Suppose $f:G \rightarrow X$ hides $H \not= G$. Then, by querying f, you can determine H.

Proof: Consider truth table of f:

	9,	22	92	24	 91	• • •	gigi
α_1	•			•	•		
α_{ϑ}			•				
1 23		•					
:							
$\chi_{ X }$							•

Then, if g_1, g_4, g_2 only elements s.t. $f(g_1) = f(g_4) = f(g_2) \implies g_1 H = \{g_1, g_4, g_2\}$ So, $H = g_1^{-1}(g_1 H)$.

The Hidden Subgroup Problem

Inlut: A grown (G_1, \cdot) , a finite set X, and a function f (for which you have an oracle) that hides some $H \leq G_1$.

output: A generating Set for H.

Notation:

- . HSP(G, X, f) for this Problem.
- . AHSP (G, X, f) if G is abelian.

Query Complexity

- · Naivery, both HSP(G,X,f) and AHSP(G,X,f) require O(IGI) queries.
- · However, I quantum algorithm that solves AHSP(G1, X,f) using O(10g 1G1) queries!
- · Quantum exponential speedup!

Def: A computational Problem [Karp reduces to a problem A, written

$$\Gamma \leq_{\rho} \Lambda$$
,

iff \exists a Poly-time algorithm A that turns instances of Γ into instances of Λ .

Ex: · Subset Sum ≤p K-SAT

· Factoring F K-SAT

Claim: If $\Gamma \leq \rho \Lambda$, then a Poly-time alg. for Λ implies a Poly-time alg. for Γ .

Quiz: Why?

Central Claim:

The AHSP is a Hory Grail because:

- · Deutsch-Jozsa ≤p AHSP(G1, X1, f1)
- · Simon's Problem = AHSP (Ga, Xa, fa)
- · Period Finding
 Period Finding
 Period Finding
 Period Finding
- · Factoring <= P AHSP (G4, X4, f4)
- · Discrete Log <= P AHSP (Gs, Xs, fs)

for appropriate choices of the groups $G_{11}...,G_{5}$, the Sets $X_{11}...,X_{5}$, and the functions $f_{11}...,f_{5}$.

Simon's Problem:

Given oracle access to f: {0,1}" -> {0,1} such that

$$f(\alpha) = f(\gamma) \iff \alpha \oplus \gamma \in \{0, 5\},$$

recover s.

Claim: Simon's Problem <p AHSP((30,13", 1), {0,13, f)

Proof: $\{S\}$ generates $\{0,S\} \leq (\{0,1\}^n, \oplus)$.

· To see that f hides {0,5}, note, $\forall g \in \{0,1\}^n$,

$$g\{0,s\} = \{g \oplus 0, g \oplus s\} = \{g, g \oplus s\}.$$

But

$$g \oplus (g \oplus s) = s \implies f(g) = f(g \oplus s)$$
.

I.e., f is constant on the cosets of {0,5}.

· Similarly, f is different on different cosets

Moral: Quantum Computers can efficiently solve the AHSP, and hence can efficiently solve the

- · Deutsch-Jozsa Problem
- · Simon's Problem
- · Period Finding Problem
- · Factoring Problem
- · Discrete Log Problem

Q: Why "abelian"?

A: The Fourier Hansform over abelian groups is considerably nices!

- look up "Pontryagin duality" to learn more.

Final Remarks:

- · Graph Isomorphism
 HSP(Sn, X, f,)
- · Shortest Vector Problem HSP(Dn, Xa, fa)
- · Post-quantum cryptosystems rely on assumption that quantum computers cannot solve general HSP!

Thank You!