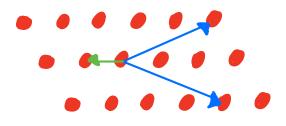
Some Things about Lattices



Matthew Fox

I: The Basics

II : Computational Problems

III: Ciypto

Part I

The Basics

Def: Given linearly independent by bay..., by ElR, which form the columns of

$$B = (b_1, b_2, \dots, b_n) \in \mathbb{R}^{m \times n}$$

a lattice 2 = 12" is

$$\mathcal{L} = \mathcal{L}(B) = \left\{ B x \mid x \in \mathbb{Z}^n \right\}$$

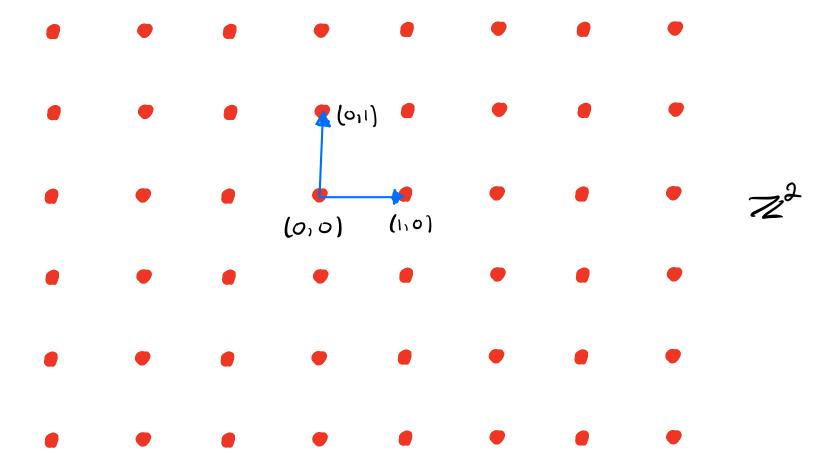
$$= \left\{ \alpha_1 b_1 + \alpha_2 b_2 + \dots + \alpha_n b_n \right\}.$$

· B is a basis.

Ex:

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

What is
$$\mathcal{L}(B) = \{Bx \mid x \in \mathbb{Z}^2\}$$
?

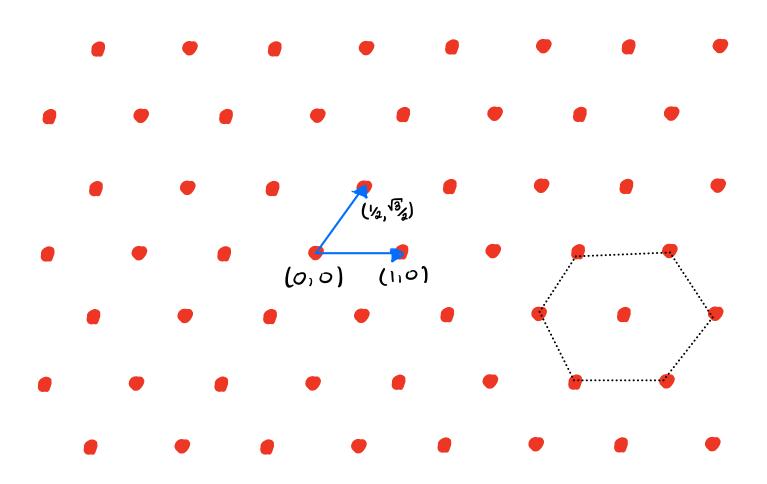


Ex:

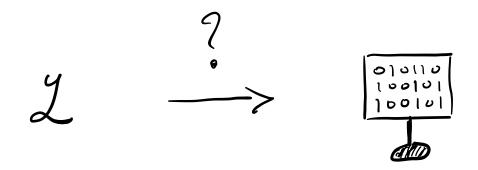
$$\beta = \begin{pmatrix} 1 & 1/2 \\ 0 & \sqrt{3}/2 \end{pmatrix}$$

What is
$$2(8) = \{8x \mid x \in \mathbb{Z}^2\}$$
?

"Honeycomb Lattice"



Q: How to represent 2 on a Computer?



A: Input B S.t. 2 = 2(B)!

However...

18 Might Contain irrational (Perhaps even uncomputable) aER.

Fix: Restrict to integer lattices $L \subseteq \mathbb{Z}^n$.

· Griven BEZMXN and R=Max 109 Bis,

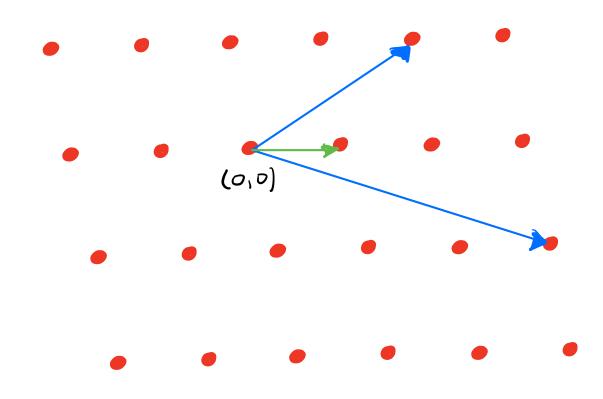
encoded size(2(8)) & M·n·l.

• Therefore, Say algorithm is efficient iff $\text{ funtime} = \text{Poly}(m,n,\ell).$

Part I

Computational Problems

The Shortest Vector Problem (SVP)



$$\chi_1(\mathcal{L}) := \min_{\mathcal{L} \in \mathcal{L} \setminus \{0\}} \|x\|_2$$

$$\underline{\mathsf{E}} \times \mathcal{L} = \mathcal{L} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbb{Z}^2.$$

What is

$$7(72^{2}) = Min ||x||_{2} ?$$

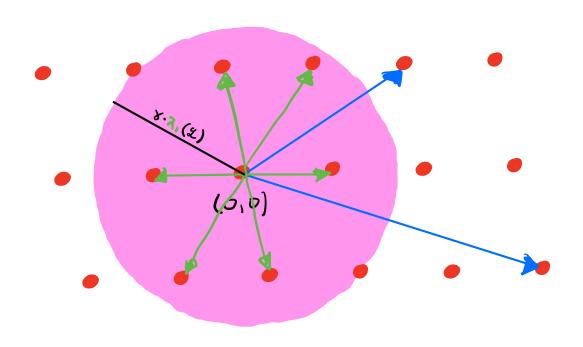
$$x \in 72^{2} \setminus \{0\}$$

Def: For $y=y(n)\geq 1$, the y-approximate

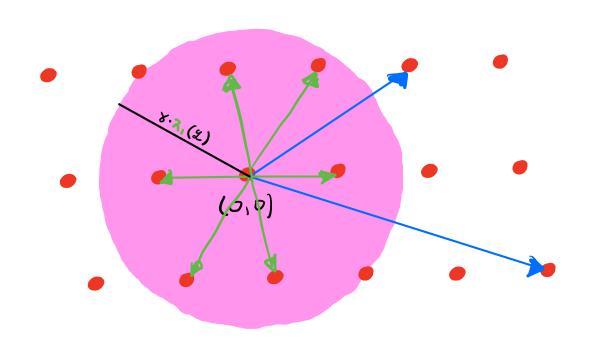
Shortest Vector Problem (8-SVP) is:

Input: BEZLMXN of lattice 4=2(B)

Output: ve2/20} s.t. ||v||2 < 8.7.(4).



Fact: The larger 8, the easier 8-SVP.



Def: For $8=8(n) \ge 1$, the 8-approximate decisional SVP (8-Gapsvp) is the Promise Problem:

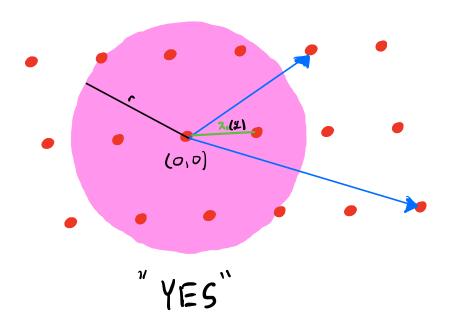
Input: (B, r), where

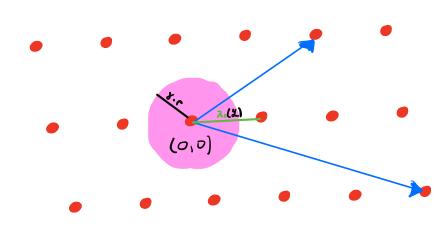
· BEZIMXN of lattice L=L(B)

0<7.

output: "YES" if $Z_1(2) \leq r$

"No" if 7 (2) > 8 r





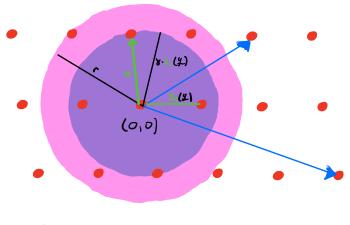
"No"

Claim: An efficient (classical or quantum)

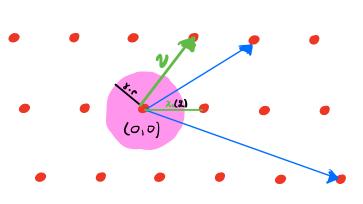
alforithm A for Y-SVP implies an efficient
alforithm for Y-Gapsvp. Therefore, Y-SVP

is at least as hard as Y-Gapsvp.

Proof: If (B,r) is a 8-Gapsvp instance, then outlet $\begin{cases} \text{"YES" if } v = A(B) \text{ s.t. } ||v|| \leq 8r \\ \text{"No" if } v = A(B) \text{ s.t. } ||v|| > 8r. \end{cases}$ Note, $||v|| \leq 8 \cdot 7 \cdot (2)$ by definition of A.



"YES" (2,(2) < r)



"No"(ス,(2)>>>)

Claim: For all 8=8(n), 8-GapSVPENP.

Proof: Given instance (8, r),

(8, r) is "YES" instance

-

7,(2) 41

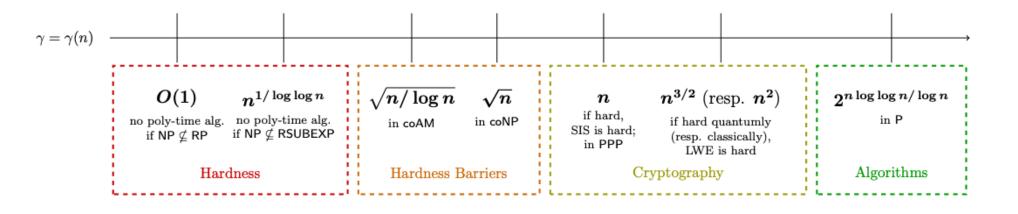
3062/203 s.t. 11111 45.

Moreover,

encoded length $(v) \le n \cdot \text{encoded length}(v_i)$ $\le n \cdot \log r$.

Therefore, v is Poly-Size witness.

The Complexity Landscale of 8-GapSVP



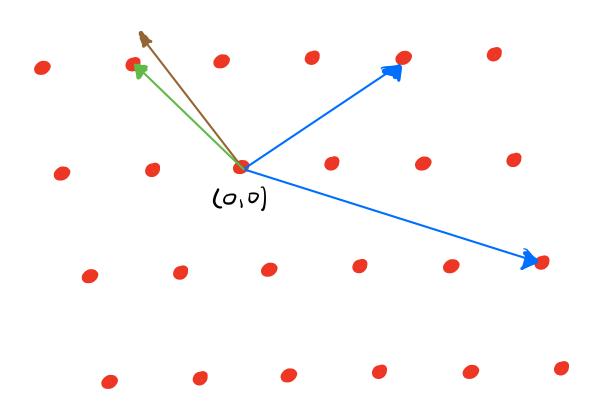
An Aside ...

Let

E.g.

Theorem: An efficient (classical or quantum) algorithm for the non-abelian hidden subgroup Problem over Dn implies an efficient algorithm for Poly(n)-GapSVP.

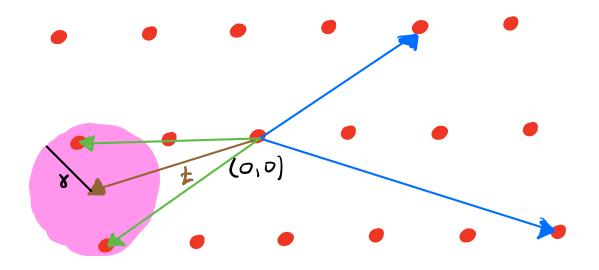
The Closest Vector Problem (CVP)



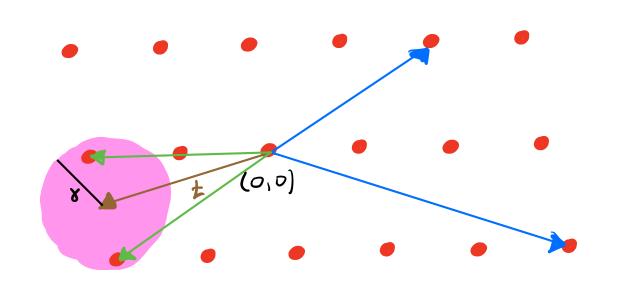
Def: For $y=8(n)\geq 1$, the y-approximate closest vector problem (y-cvp) is:

Input: (B, t), where

. LERn



Fact: The larger 8, the easier 8-CVP.



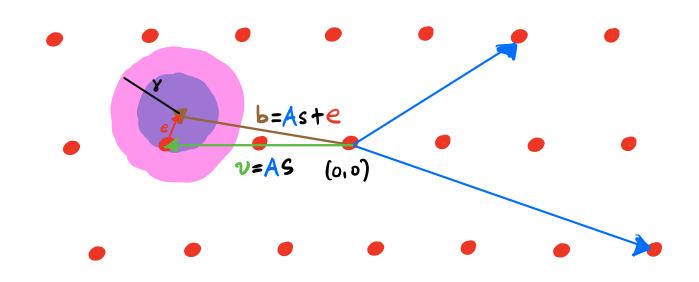
Theorem (Goldreich et al., 1999):

An efficient (classical or quantum) algorithm A for Y-CVP implies an efficient algorithm for Y-SVP. Therefore, Y-CVP is at least as hard as Y-GapsVP.

Non-Proof: Let B be an instance of X-SVP. ·Call A(B, t=0) ("closest vector to Zero") · Return $v \in \mathcal{L}$ s.t. $||v|| \leq x \leq x \approx 2$.

Q: What's wrong with this?

The Learning With Errors Problem (LWE)



Def: For integers m > n, Modulus $9 \ge 2$, and $2 \sim 2_{9}$, the (m, 9, x)-LWE Problem is:

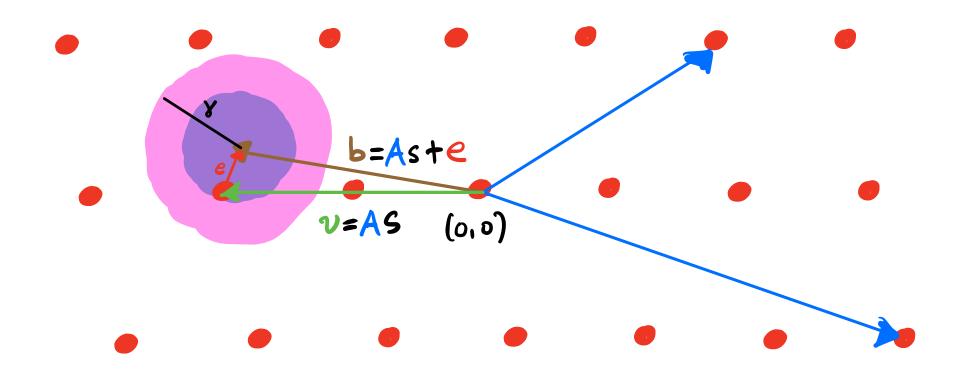
Input: (A,b), where

- · A ~ 72mxn uniformly
- · b=Aste (mod 9) where → S~724 uniformly → e~2^m

Outlut: Find S.

"Claim": If Pr [Hell is "large"] $\ll 1$, then an efficient (classical or quantum) algorithm for $(m_1 2, \infty)$
LWE implies an efficient algorithm for χ -CVP.

"Proof" Given LWE instance (A, b=Aste (mod 9)), let $\mathcal{L}_{A} = \{ x \mid \exists \pm \in \mathbb{Z}_{2}^{n} : x = A \pm \text{ (mod 9)} \} \subset \mathbb{Z}^{m}$ LWE gives s. Since, by definition, $x - \text{CVP}(A, b) = v \in \mathcal{L}_{A} \text{ s.t. } ||v - b|| \leq 8$, if ||e|| is "small", then v = As solves x - CVP.



Theorem (Regev, 2005):

For an appropriate Choice of Parameters, an efficient (Classical or quantum) algorithm for $(m, 2, \chi)$ - LWE implies an efficient algorithm for Poly(n) - CVP. Therefore, $(m, 2, \chi)$ - LWE is at least as hard as Poly(n)-GapsVP.

"Worst-to-average case reduction."

Part III Crypto

The Magic of Public-Key Crypto

Scott and I have never Communicated before

I Say Something

Everyone hears

Scott Says Something

Everyone hears

I Say Something

Everyone hears

Only Scott understands

Def: A Public-Key Crypto system consists of three efficient algorithms:

- Gen: 1" -> (P,S)
 - (Key generation) (encryption/Cipher)
- · Enc : (P, MEZOII) -> C
- (Lectyption). · Dec: (S,C) >> "

We say a system is secure iff Y efficient adversaries A,

$$Pr\left[A(p,c)=\mu\right] \leq \frac{1}{2} + negliqible frc.$$

I.e., A cannot do better than randomiy guessing K.

Reger Encryption

- · Gen (1") = (P,S), where
 - 0 5 ~ 72°
 - o $P = (A, b = AS + e (modq)), A \sim \mathbb{Z}_q^{m \times n}$ and $e \sim \chi^m$
- · Enc (P, M = {0,1}) = (C,d), where
 - · C=(rTA mod 9) T = 72, r~ {0,13m
 - · d = 5 to + M[9/2] (mod 9) E729
- $Dec(S,(C,d)) = \begin{cases} 0 & \text{if } d-c^{T}S \pmod{9} \in [-94, 94], \\ 1 & \text{otherwise}. \end{cases}$

Proof of Correctness:

If, as in LWE,

then

So, indeed,

Theorem (Reger 2005):

For an appropriate Choice of Parameters, if Regev encryption is not secure, then there exists an efficient algorithm for (m, 2, x) - LWE. Therefore, breaking Regev encryption is at least as hard as poly(n)-Grapsvp.

Some Properties of Reger Encryption

- · Efficient in Practice, and can be made faster by imposing more structure (RingLWE)
- · No modular exponeniation like in RSA
- · Fully homomorphic
- · Secure against quantum adversaries (so far!)

Cryptographic Suite for Algebraic Lattiles ("CRYSTALS")

Introduction

Kyber is an IND-CCA2-secure key encapsulation mechanism (KEM), whose security is based on the hardness of solving the learning-with-errors (LWE) problem over module lattices. Kyber is one of the finalists in the NIST post-quantum cryptography project. The submission lists three different parameter sets aiming at different security levels. Specifically, Kyber-512 aims at security roughly equivalent to AES-192, and Kyber-1024 aims at security roughly equivalent to AES-256.

For users who are interested in using Kyber, we recommend the following:

- Use Kyber in a so-called hybrid mode in combination with established "pre-quantum" security; for example in combination with elliptic-curve Diffie-Hellman.
- We recommend using the Kyber-768 parameter set, which—according to a very conservative analysis—achieves more than 128 bits of security against all known classical and quantum attacks.

Scientific Background

The design of Kyber has its roots in the seminal <u>LWE-based encryption</u> scheme of Regev. Since Regev's original work, the practical efficiency of LWE encryption schemes has been improved by observing that the secret in LWE can come from the <u>same distribution</u> as the noise and also noticing that <u>"LWE-like" schemes</u> can be built by using a square (rather than a rectangular) matrix as the public key. Another improvement was applying an idea originally used in the <u>NTRU cryptosystem</u> to define the <u>Ring-LWE</u> and <u>Module-LWE</u> problems that used polynomial rings rather than integers. The CCA-secure KEM Kyber is built on top of a CPA-secure cryptosystem that is based on the hardness of Module-LWE.

Users of Kyber

Kyber is already being integrated into libraries and systems by industry. For example,

- Cloudflare integrated Kyber alongside other PQ algorithms into CIRCL, the Cloudflare Interoperable, Reusable Cryptographic Library;
- · Amazon now supports hybrid modes involving Kyber in their AWS Key Management Service; and
- already in 2019 IBM <u>advertised the "World's First Quantum Computing Safe Tape Drive"</u> using Kyber and <u>Dilithium</u>.

Thank You!

