
Quantum Programming Lecture Notes

Colorado School of Mines
CSCI 581

Matthew Fox
University of Colorado Boulder

Last Updated: April 16, 2025

Contents

Foreword 6

1 A Most Incomprehensible Thing 7
1.1 The Church-Turing-Deutsch Thesis 7
1.2 Feynman’s Vision . 9
1.3 An Experimental Fact of Life . 10
1.4 Another Experimental Fact of Life 14

2 Quantum Mechanics I 16
2.1 States of Quantum Systems . 16
2.2 Composite Systems . 19

3 Quantum Mechanics II 23
3.1 The Evolution of Quantum Systems 23
3.2 Application: Quantum Computers 25
3.3 Observables and Projective Measurements 26
3.4 Distinguishing Quantum States . 29

4 Quantum Mechanics III 30
4.1 The Evolution of Composite Systems 30
4.2 Measuring Composite Systems . 31
4.3 One Way of Thinking About This* 35

5 Qubits, Quantum Encodings, and Bell’s Theorem 37
5.1 Bits and Bit Strings . 37
5.2 Basis Encodings . 38
5.3 Qubits and the Bloch Sphere . 40
5.4 Amplitude Encodings* . 42
5.5 Bell’s Theorem* . 43

2

6 The Circuit Model of Classical Computation 47
6.1 Classical Gate Sets and Circuits . 47
6.2 Universal Classical Gate Sets . 49
6.3 The Circuit Model of Classical Computation 51
6.4 Efficient Deterministic Classical Computers 52

7 Randomized Computation 54
7.1 Quantum Computers are Probabilistic 54
7.2 Probabilistic Classical Circuits . 55
7.3 Probabilistic Classical Computers 56
7.4 Probability Amplification . 59

8 Reversible Computation 61
8.1 Quantum Computers are Reversible 61
8.2 Reversible Gate Sets and Garbage Bits 62
8.3 Reversible Circuits . 65
8.4 Uncomputation . 67
8.5 Reversible Classical Computers* . 68
8.6 Landauer’s Principle* . 70

9 Quantum Gates 71
9.1 Single-Qubit Gates . 71
9.2 Non-Entangling Multi-Qubit Gates 73
9.3 Entangling Multi-Qubit Gates . 76

10 The Circuit Model of Quantum Computation 81
10.1 Quantum Circuits . 81
10.2 The Circuit Model of Quantum Computation 84
10.3 Quantum Uncomputation* . 86

11 Universal Gate Sets and Quantum Compilation 89
11.1 The Operator Norm and Generating Sets 89
11.2 Universality and the Clifford + T Gate Set 91
11.3 Quantum Compilation . 93
11.4 Computational Universality* . 97

12 Quantum Computational Complexity Theory 99
12.1 Languages and Decision Problems 99
12.2 P, BPP, and Friends . 100
12.3 BQP . 103

3

12.4 The Limits of BQP . 105

13 Grover’s Algorithm 108
13.1 Oracles and the Query Complexity Paradigm 108
13.2 Unstructured Search . 109
13.3 Grover’s Algorithm . 109
13.4 Correctness of Grover’s Algorithm 111
13.5 Generalizations and Quantum Optimality* 118
13.6 Grover and NP* . 119

14 Simon’s Algorithm 120
14.1 An Aside about H . 120
14.2 Simon’s Problem . 121
14.3 Simon’s Algorithm . 122
14.4 Correctness of Simon’s Algorithm 123

15 The Quantum Fourier Transform 127
15.1 The Quantum Fourier Transform over ZN 127
15.2 Properties of FZN . 130
15.3 Implementing FZN on a Quantum Computer 132

16 The Quantum Phase Estimation Algorithm 134
16.1 The Phase Estimation Problem . 134
16.2 The Quantum Phase Estimation Algorithm 135
16.3 Correctness of QPE: The Exact Case 138
16.4 Correctness of QPE: The Non-Exact Case* 139

17 The Quantum Period Finding Algorithm 142
17.1 The Period Finding Problem . 142
17.2 The Quantum Period Finding Algorithm 143
17.3 Correctness of QPF: The Exact Case 144
17.4 Correctness of QPF: The Non-Exact Case 145
17.5 Extracting the Period: The Continued Fractions Algorithm 149
17.6 QPF is QPE in Disguise* . 153
17.7 A Number Theoretic Digression* 155

18 Shor’s Algorithm for Factoring Integers 157
18.1 The Integer Factorization Problem 157
18.2 When is Factoring Easy? . 158
18.3 Some Requisite Number Theory . 159

4

18.4 Shor’s Algorithm for Factoring Integers 161

19 Shor’s Algorithm for Discrete Logarithms 164
19.1 Diffie–Hellman Key Exchange . 164
19.2 The Discrete Logarithm Problem 166
19.3 When is Discrete Log Easy? . 167
19.4 The Discrete Log Problem as Lattice Period Finding 168
19.5 Shor’s Algorithm for the Discrete Log Problem 170

20 The Hidden Subgroup Problem 173
20.1 Groups, Hiding Functions, and the Hidden Subgroup Problem . . . 173
20.2 The Many Reductions to AHSP . 176
20.3 An Efficient Quantum Algorithm for AHSP 178
20.4 The Non-Abelian HSP* . 180

21 Quantum and Post-Quantum Cryptography 181
21.1 Public-Key Cryptography . 181
21.2 The Quantum Alternative: Quantum Cryptography 185
21.3 The Classical Alternative: Post-Quantum Cryptography 188

22 Hamiltonian Simulation 193
22.1 Matrix Exponentials . 193
22.2 The Differential Form of Schrödinger’s Equation 195
22.3 Simulating Quantum Mechanics with a Quantum Computer 199
22.4 Matrix Encodings* . 202
22.5 BQP-Completeness* . 203

23 Post-Selection and Quantum Advantage 205
23.1 Relativized Complexity Classes . 205
23.2 The Polynomial Hierarchy . 206
23.3 Post-Selection and Post-Selected Complexity Classes 208
23.4 Weak Multiplicative Simulations and PH Collapse 210
23.5 Weak Additive Simulations and PH Collapse* 212

5

Foreword

This is a set of lecture notes on quantum computation that was originally prepared
for the Quantum Programming (CSCI 581) course at the Colorado School of Mines
during the Spring 2025 semester. These notes are intended for advanced undergrad-
uate and first-year graduate students who have taken a course in computability
theory and who have had some exposure to quantum mechanics and/or quantum
information theory. That said, the requisite quantum mechanics is introduced
within the first few lectures, so anyone lacking a “quantum” background can in
principle follow along.

These notes cover several important topics in quantum computing theory, in-
cluding: the postulates of quantum mechanics, the theory of classical reversible
computation in the circuit model, the theory of quantum computation in the circuit
model, quantum computational complexity theory, and several important quantum
algorithms, such as Grover’s algorithm, Shor’s algorithms for factoring and the
discrete logarithm problem, and other more general hidden subgroup problems.
These notes also feature lectures on Hamiltonian simulation and quantum and
post-quantum cryptography.

Throughout these notes, an asterisk (*) means “Time Permitting”, i.e., that the
marked topic will probably not be covered in class, but that the topic is nevertheless
relevant to the material at hand, and should therefore be read outside of class.
Moreover, these notes consist of several exercises, discussions, and questions, and
anyone reading these notes should try their hand at all of these. They are generally
easy to do, at least mathematically speaking.

Please keep in mind that I wrote these notes on a tight schedule. In consequence,
they are in no way a comprehensive treatment of the subject nor are they guaranteed
to be error-free. Corrections by email to matthew.fox@colorado.edu are welcome.

I hope you find these notes to be a pedagogically useful resource for learning
about the theory of quantum computation.

6

mailto:matthew.fox@colorado.edu

Lecture 1
A Most Incomprehensible Thing

In this first lecture, we will review the notion of computable functions, the Stern-
Gerlach experiment, and a simplified version of Bell’s theorem. Part of this
presentation is based on David Albert’s outstanding book Quantum Mechanics and
Experience. My point is simply to present the inimitable bizarreness of the quantum
world. Perhaps, as we will explore at length in this course, such weirdness will
manifest into a sort of “quantum computational advantage” for computing some of
the computable functions.

1.1. The Church-Turing-Deutsch Thesis

In this class, we are ultimately interested in functions f : N→ N (or, equivalently,
f : Σ∗ → Σ∗, where Σ is an alphabet of symbols, like {0, 1}). Let’s begin by seeing
how many of such functions there are.

Claim 1.1. There are uncountably many f : N→ N.

Proof. Suppose there are only countably many. Then, we can enumerate them:
f1, f2, Let h(n) := fn(n) + 1. Clearly h : N → N, however h 6= fn for all n,
which is a contradiction. �

We are particularly interested in those f : N → N that we can “compute” in
some sense. To get at this, consider the following informal idea:

Definition 1.1. Say f : N→ N is effectively calculable (EC) iff there exists a finite,
pen-and-paper procedure whereby a rote worker can deduce f(n) for every n ∈ N.

This, of course, is awkwardly informal. Effective calculability gets at the idea
that there is some finite, mechanical (and physical!) process to evaluate f on any
input. It is the purpose of the Church-Turing thesis to precisify this idea.

7

Thesis 1.2 (Church-Turing Thesis). A function f : N→ N is EC iff it is computable
by a Python program, i.e., iff there exists a Python program M such that n ∈ N,
M(n) = f(n).1

Note that this is not a statement that one can prove. Instead, the CTT is a
postulate about computability theory that makes an hitherto informal idea (effective
calculability) mathematically rigorous. From this, we can deduce some interesting
consequences, such as the following.

Exercise 1.1. Prove there is f : N → N that no Python program can compute.
Conclude that there are uncomputable functions.

In this class, we will take the perspective that computers are physical devices that
evolve according to the laws of physics. This of course is motivated by the CTT,
which instantiates this picture of someone working tirelessly with pen-and-paper,
deducing on pain of irrationality f(n) for any given n.

Discussion 1.1. Is computational physical? Are computers constrained by physical
law?

This motivates the following, highly informal “definition” that is akin to the
notion of effective calculability.

Definition 1.2. Say f : N→ N is physically calculable (PC) iff there exists a finite,
physical system S whose mere physical evolution computes f(n) for any n ∈ N.

Again, this is awkwardly informal. Moreover, this also feels quite different from
the once but no longer informal notion of effective calculability, which was based
on the picture of a rote worker computing with pen and paper. That said, the EC
picture is nevertheless physical, so the following claim is somewhat clear:

Claim 1.3. If f : N→ N is computable by a Python program, then f is PC.

Discussion 1.2.

(i) Is this reasonable?

(ii) What about the converse? Is there a PC f : N → N (computed, perhaps
by a bunch of electrons or, more exotically, the Hawking radiation from a
Schwarzschild black hole) that is uncomputable?

1Note that one can replace “Python program” with “deterministic Turing machine”, for example,
because Python is a Turing-complete programming language (as is PowerPoint, by the way).

8

In fact, it is generally believed that every PC function is computable. This is
based on reductionist arguments that quantum mechanics (most likely) underlies
everything there is in the universe and, as we will see in this course, that quan-
tum systems cannot compute uncomputable functions. Put together, this belief
constitutes its own thesis:

Thesis 1.4 (Church-Turing-Deutsch Thesis). A function f : N→ N is PC iff it is
computable by a Python program.

Again, like the CTT, this statement is not something that one can prove. Instead,
its purpose is to make mathematically precise an hitherto informal idea (physical
calculability). Note also that this thesis is no longer just a postulate about com-
putability theory, but is also a postulate about the physical world. In my opinion,
this elevates the set of all computable functions to the level of a fundamental
constant of nature, on a par with the speed of light c, Plank’s constant ~, and
Newton’s gravitational constant G.

Conclusion 1.1. Quantum systems (and quantum computers in particular) cannot
compute functions that no classical computer (like a Python program or determinis-
tic Turing machine) can. In other words, for every quantum computer, there exists
a classical computer that can simulate it, and vice versa.

Question 1.1. If this is the case, then what is this course about? That is, if
classical computers can simulate physical systems (and hence if classical computers
can compute the same set of functions that physical systems can), then what are we
doing here?

1.2. Feynman’s Vision

In 1981, the physics Nobel laureate Richard Feynman wrote a paper entitled
Simulating Physics with Computers. There, he notes that if |ψ〉 ∈ C2n is the state
of a quantum system, then, generally speaking,

a faithful description of |ψ〉 seems to require Ω(2n) complex numbers.

Therefore, to accurately simulate the evolution of |ψ〉 would require storing an
exponential number of parameters, so that the overall simulation will take a very
long time (as a function of n). The quantum system, however, merely evolves its
state |ψ〉 with ease. In this way, it seems that quantum systems might be able to
compute a function more efficiently than any classical computer. So indeed, this

9

course is not about effective calculability, but efficient calculability. Overall, the
suspicion of most folks in the quantum computing world is the following:

Conjecture 1.5. There exists f : N→ N that a quantum computer can compute in
polynomial time but any classical computer takes exponential time. Note, this does
not mean that we think quantum computers can solve every problem in NP because
f need not correspond to an NP-complete problem (e.g. factoring integers).

Ultimately, we expect this “quantum advantage” or “quantum speedup” to come
from the inimitable bizarreness of the quantum world, some of which we will now
discuss.

1.3. An Experimental Fact of Life

Every quantum particle (an electron or silver atom, say) appears to have an
intrinsic property that we call color and an intrinsic property that we call hardness.
Whenever we look to see what the color of a particle is, we only ever see it to be
either white (w) or black (b). Likewise, whenever we look to see what the hardness
of a particle is, we only ever see it to be either hard (h) or soft (s). For decades, no
other color or hardness has ever been seen, so we are confident that these are the
only possible color and hardness values.

It is possible to build a color box, C, which resolves the color (w or b) of a particle.
It acts by taking as input a particle (left), whose color can be known or unknown,
and, after a short time, by ejecting as output the same particle (right) on either
the top track, if the color of the particle is white, or on the bottom track, if the
color of the particle is black. Diagrammatically,

C
w

b

Similarly, we can build a hardness box, H, which resolves the hardness (h or s) of
an input particle akin to how a color box resolves the color of an input particle. It
looks like this:

H
h

s

10

We may wonder if color and hardness are correlated. But, after many trials of
feeding only hard particles into a color box, we conclude they are not because, in
aggregate, 50% of the hard particles came out black and 50% came out white:

h C
w

b

50%
50%

Question 1.2. How can we do this experiment without a source of hard particles?

Answer: this setup can be achieved by concatenating a hardness box with a
color box, and then directing the hard output of the hardness box into the input of
the color box:

H
h

�

C
w

b

50%
50%

The same 50-50 statistics result if we instead feed soft particles into a color box,
white particles into a hardness box, or, finally, black particles into a hardness box.
These results only reaffirm our previous conclusion that hardness and color are
uncorrelated.

Now consider the following apparatus:

H
h

s
M h + s

Here, the logical-AND-looking M gate is the commingler—it commingles the hard
and soft beams through a simple placement of mirrors (which experiments decidedly
show do not affect the hardness or color of a particle).

Suppose we feed many white particles into this apparatus and then measure the
hardness of the h + s beam, as in:

w H
h

s
M h + s H

h

s

Question 1.3. Given what has been said so far, at the output of the first hardness
box (left), what percentage of white particles do you expect to come out soft and
what percentage do you expect to come out hard?

11

Answer: at the output of the first hardness box (left), we expect 50% of the
white particles to be soft and 50% to be hard. By design, the commingler M does
not change hardness or color, so these statistics should hold in the h + s beam. We
therefore expect 50% of the output of the second hardness box (right) to emerge
soft and 50% to emerge hard since 50% of the input to the second hardness box is
soft and 50% is hard. Indeed, this is exactly what happens.

Now consider the simple variation below, where instead of inputting a white
particle we input a hard particle, and instead of measuring its hardness after the
commingler we measure its color:

h H
h

s
M h + s C

w

b

Question 1.4. Now what do you expect the statistics to be?

Answer: In this case, since the input particles are all hard, we expect the
hardness box to output zero soft particles. The commingler does not change the
hardness, so 100% of the particles in the h + s beam should be hard. We know
when we input a hard particle into a color box that the output is split 50% white
and 50% black, so this is what we should expect. Indeed, this is exactly what
happens.

Now consider one final variation to this experiment. Suppose into this apparatus
we input a white particle, as opposed to a hard particle, and then, after the
commingler, measure its color like in the previous experiment:

w H
h

s
M h + s C

w

b

Given the reasoning we’ve used so far, there are two ways you might go here. On
one hand, we input white particles, so it is natural to expect only white particles
to emerge. On the other hand, at the output of the hardness box, we expect 50%
of the white particles to be soft and 50% to be hard. The commingler M does not
change hardness or color, so these statistics should hold in the h + s beam. We
therefore expect 50% of the input to the color box to soft and 50% to be hard.
Therefore, one might also expect 50% of the output to be white and 50% to be
black.

Question 1.5. What do you think will happen?

12

Answer: In fact, 100% of the output is white. No black particles ever emerge
from this apparatus.

Let’s look more closely at this experimeint. Since the output of a color box is
white if and only if the input is white, it must be that the h + s beam is composed
of only white particles. But the h + s beam comes from the commingler, which
does not change the color or hardness of the individual h and s beams. Thus,
the individual h and s beams must themselves be exclusively composed of white
particles. To test this hypothesis, we block off the internal soft beam:

w H
h

�
M h C

w

b

Question 1.6. What do you think happens?

Answer: In fact, instead of finding that the output is 100% white particles, the
output goes back to 50% white and 50% black. The same thing happens if we
instead blocked off the internal hard beam.

This is (ostensibly) bad news for logic. To see why, ask the innocent question:
along which internal path (h or s) did the input white particle go?

If it took h, then blocking the s path should have no effect. But, as we just saw,
blocking the s path does have an effect: the output statistics change.

If it took s, then blocking the h path should have no effect. But, like in the last
experiment, blocking the h path does have an effect: the output statistics change.

Maybe it somehow took both? Suppose, then, that when the particle is traversing
the internal path we closely scrutinize the two tracks. No matter how we look, we
invariably see it on only one of the two paths, so it makes no sense to say that it
takes both!

Maybe it took neither? But that’s moonshine: if it takes neither, then blocking
both the h and s paths should have no effect, yet doing that yields no output at all!

Surely, then, something is amok with these color and hardness boxes and the
commingler. After all, what else could be responsible for this inscrutable behavior?
However, after decades of R&D into wildly different color and hardness boxes and
comminglers, all of which function perfectly but via totally unrelated means, our
credence that it is the experimental apparatus at fault nears zero.

Hence, with exceptionally high credence—higher credence than most other scien-
tific exploits—we disconcertingly find ourselves with this: particles passing through
this last apparatus, to the extent that we are able to understand them, do not take
the internal route h, nor the internal route s, nor both, nor neither. These exhaust

13

the logical possibilities. Therefore, if this is right—and again we have exceptionally
good evidence that it is—then there can be no fact of what internal route the
particle took. In other words, despite our ability to measure the hardness of a
white particle and to obtain, in every instance of measuring, a demonstrable fact of
the matter of what we measure the hardness of the white particle to be, before we
measure the hardness, there is no fact of the hardness of a white particle. In the
philosopher David Albert’s words, “asking which internal path the electron took is
like asking what is the marital status of the number 5.”

Something extraordinary is happening pre-measurement in this experiment, and
that extraordinary thing is quantum superposition.

Discussion 1.3. Given what you know about quantum superpositions, how do you
think about this? Is there anything in classical computing that resembles quantum
superposition? In your day-to-day, is there anything that resembles a quantum
superposition?

Much of quantum computing rests on our ability to create quantum superpositions,
and then, in some sense, to compute a bunch of things in parallel. We will see
exactly how this works in a few lectures.

1.4. Another Experimental Fact of Life

Yet another bizarre feature of quantum mechanics stems from something called
entanglement, which we will formally define in the next lecture. In fact, this feature
(called a Bell inequality violation) is arguably the most quintessentially quantum
thing about quantum mechanics.

Definition 1.3. Let S be a physical system with measurable properties A, B, and
C, and let

NS(A,B,C) = # times we see S with A,B, and C
NS(A,B, C̄) = # times we see S with A,B, and NOT C

NS(A,B) = # times we see S with A and B,
...

Example 1.1.

• S is a car, A is its speed relative to the road, B is its GPS coordinates, and C
is its color.

14

• S is a star, A is its mass, B is its luminosity, and C is its angular momentum.

• S is an electron, A is its color (a.k.a. its x-spin), B is its hardness (a.k.a. its
y-spin), and C is its z-spin.

Claim 1.6. For all systems S with measurable properties A, B, and C,

NS(A, B̄) +NS(B, C̄) ≥ NS(A, C̄).

Proof. The right-hand side equals

RHS = NS(A, C̄) = NS(A,B, C̄) +NS(A, B̄, C̄).

The left-hand side equals

LHS = NS(A, B̄) +NS(B, C̄)
= NS(A, B̄, C) +NS(A, B̄, C̄) +NS(A,B, C̄)︸ ︷︷ ︸

RHS

+NS(Ā, B, C̄)

= NS(A, B̄, C) +NS(Ā, B, C̄) + RHS
≥ RHS.

�

Theorem 1.7 (A Version of Bell’s Theorem). Let S be two maximally entangled
electrons, e1 and e2, and consider the measurable properties

• A = the spin of e1 is up along the z-axis,

• B = the spin of e2 is up along the (θ, 0)-axis,

• C = the spin of e2 is up along the (2θ, 0)-axis.

Then, for sufficiently small θ,

NS(A, B̄) +NS(B, C̄) < NS(A, C̄).

What the heck is going on will have to wait. Interestingly, though, in certain
models of quantum computation that exhibit a provable quantum advantage (namely,
quantum shallow circuits), it is possible to directly relate their advantage to a Bell
inequality violation like this.

15

Lecture 2
Quantum Mechanics I

Discussion 2.1. Discuss with your group what you took away from last time.

Last time, we discussed the Church-Turing-Deutsch thesis, which expresses the
belief that quantum computers can probably not compute Turing uncomputable
functions. However, this leaves open the possibility that quantum computers might
be able to compute certain functions faster than any classical computer, thanks to
the weirdness of quantum mechanics (such as things like superposition and Bell’s
theorem, the latter of which turns out to be possible because of entanglement).

In this lecture, we will study some of the postulates of quantum mechanics, their
mathematical formalism, and the definition of a qubit.

2.1. States of Quantum Systems

Every physical theory has physical primitives that do not have a totally agreeable
definition. For example, a “particle” is a primitive in Newtonian mechanics and in
Einstein’s relativity. In quantum mechanics, the physical primitive is a “quantum
system”. It is a “you know it when you see it” kind of thing, which exists in the
real world. If you like reductionism, then most likely every physical system is a
quantum system, though that position is contended by some.

Postulate 2.1.

• To every quantum system S, there corresponds a complex-valued, complete
inner product space (a.k.a. a Hilbert space)

H = CN ,

where N is the dimension of H.

16

• We denote a generic vector in H using Paul Dirac’s “ket notation”, |ψ〉. This
can be thought of as a column vector in some basis:

|ψ〉 =


ψ0
ψ1
...

ψN−1

 , ψi ∈ C.

• To every |ψ〉 ∈ H, there corresponds a dual vector 〈ψ|, known as a “bra vector”,
which formally is in the dual space of H. The dual vector 〈ψ| can be thought
of as a row vector that is the conjugate transpose of |ψ〉:

〈ψ| = |ψ〉†

:= (|ψ〉∗)T

=
(
ψ∗0 ψ∗1 · · · ψ∗N−1

)
.

• The inner-product 〈·|·〉 on H is the bra-ket inner-product:

〈ψ|φ〉 := 〈ψ||φ〉

=
(
ψ∗0 ψ∗1 · · · ψ∗N−1

)


φ0
φ1
...

φN−1


=

N−1∑
i=0

ψ∗i φi.

• The bra-ket inner-product induces a norm on H:

‖|ψ〉‖ :=
√
〈ψ|ψ〉 =

√√√√√N−1∑
i=0

ψ∗iψi.

• A unit-vector |ψ〉 is a vector in H whose norm is one, i.e.,

‖|ψ〉‖ =
√
〈ψ|ψ〉 = 1.

• A state of the system S is a unit-vector in H.

17

Fact 2.1. If |ψ〉 and |φ〉 are quantum states, then so is

α|ψ〉+ β|φ〉

for all α, β ∈ C such that |α|2 + |β|2 = 1, where |α|2 := α∗α. This is superposition.

Example 2.1. A two-state system, such as the spin of an electron, is called a
quantum bit or qubit for short. Mathematically, we describe this using a two-
dimensional Hilbert space

Hqubit = C2 = span
{(

1
0

)
,

(
0
1

)}
.

Exercise 2.1.

(1) Do you know a quantum system whose Hilbert space is C4? C2n?

(2) What would you say the difference is between the states 1√
2 |ψ〉+ 1√

2 |φ〉 and |ψ〉
with probability 1/2 and |φ〉 with probability 1/2?

Definition 2.1. The computational basis of CN is the orthonormal basis

B(N) :=





1
0
...
0
0


,



0
1
...
0
0


, . . . ,



0
0
...
1
0


,



0
0
...
0
1




.

If N = 2, then we label the two computational basis states using bits:

|0〉 :=
(

1
0

)
and |1〉 :=

(
0
1

)
.

Therefore,
Hqubit = span

{
|0〉, |1〉

}
.

Exercise 2.2. Let {0, 1}n be the set of all n-bit strings. Prove {0, 1}n and B(2n)
are bijective. Why is that interesting from an information-encoding point of view?

18

2.2. Composite Systems

Postulate 2.2. Let A and B be quantum systems with Hilbert spaces HA = CNA

and HB = CNB , respectively. The combined quantum system A+B is described
by the Hilbert space

HA+B = HA ⊗HB
∼= CNM ,

where ⊗ denotes the tensor product.

What does this mean?

Definition 2.2. Let |a0〉, |a1〉, . . . , |aNA−1〉 and |b0〉, |b1〉, . . . , |bNB−1〉 be bases of HA

and HB, respectively. Then,

HA ⊗HB = span
{
|ai〉 ⊗ |bj〉 : i ∈ {0, . . . , NA − 1}, j ∈ {0, . . . , NB − 1}

}
,

where if

|ψ〉 =


ψ0
ψ1
...

ψNA−1

 and |φ〉 =


φ0
φ1
...

φNB−1

 ,

then

|ψ〉 ⊗ |φ〉 :=


ψ0|φ〉
ψ1|φ〉
...

ψNA−1|φ〉

 =



ψ0


φ0
φ1
...

φNB−1



ψ1


φ0
φ1
...

φNB−1


...

ψNA−1


φ0
φ1
...

φNB−1





=



ψ0φ0
ψ0φ1
...

ψ0φNB−1
ψ1φ0
ψ1φ1
...

ψ1φNB−1
...

ψNA−1φ0
ψNA−1φ1

...
ψNA−1φNB−1



.

Similarly,
〈ψ| ⊗ 〈φ| =

(
ψ∗0〈φ| ψ∗1〈φ| · · · ψ∗NA−1〈φ|

)
.

19

Notation 2.1. It is often tedious to keep track of all the tensor product symbols.
For this reason, I (and others) will often omit the tensor product symbol ⊗ when
talking about composite systems:

|ψ〉|φ〉 := |ψ〉 ⊗ |φ〉
〈ψ|〈φ| := 〈ψ| ⊗ 〈φ|

Exercise 2.3.

(1) What is the Hilbert space for a quantum system composed of two qubits?

(2) Evaluate the overall state of the system for two qubits in the states:
(a) |0〉 and |0〉
(b) |1〉 and |0〉
(c) |0〉 and |1〉
(d) |1〉 and |1〉

(3) What bit strings would you say that each of these states encodes?

Conclusion 2.1. Like how {0, 1} is the “state-space” of a single bit, {|0〉, |1〉}
spans the state space of a single qubit. And like how {0, 1}2 := {00, 01, 10, 11} is
the “state space” of two bits, {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉} spans the state space of
two qubits, etc.

Fact 2.2 (HW 1).

(1) The tensor product is bilinear. That is, for all α ∈ C and all |ψ1〉, |ψ2〉 ∈ HA

and |φ1〉, |φ2〉 ∈ HB:
• α(|ψ1〉 ⊗ |φ1〉) = (α|ψ1〉)⊗ |φ1〉 = |ψ1〉 ⊗ (α|φ1〉),
• (|ψ1〉+ |ψ2〉)⊗ |φ1〉 = |ψ1〉 ⊗ |φ1〉+ |ψ2〉 ⊗ |φ1〉,
• |ψ1〉 ⊗ (|φ1〉+ |φ2〉) = |ψ1〉 ⊗ |φ1〉+ |ψ1〉 ⊗ |φ2〉.

(2) For all product states |ψ1〉 ⊗ |φ1〉, |ψ2〉 ⊗ |φ2〉 ∈ HA ⊗HB,

(〈ψ1| ⊗ 〈φ1|)(|ψ2〉 ⊗ |φ2〉) = 〈ψ1|ψ2〉 · 〈φ1|φ2〉.

(3) The norm of a tensor product is the product of the norms, i.e. for all |ψ〉 ∈ HA

and all |φ〉 ∈ HB,
‖|ψ〉 ⊗ |φ〉‖ = ‖|ψ〉‖ · ‖|φ〉‖.

20

(4) The tensor product is not commutative.

Exercise 2.4. Prove this last fact, that the tensor product is not commutative.
(Hint: What are |0〉|1〉 and |1〉|0〉?)

Fact 2.3 (Entanglement). By the bilinearity of the tensor product, it is sometimes
possible to factor states:

|ψ1〉 ⊗ |φ〉+ |ψ2〉 ⊗ |φ〉 = (|ψ1〉+ |ψ2〉)⊗ |φ〉.

We say this state is separable, because the state can be written as a state from HA

times a state from HB. However, this is not always possible, for example:

|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉.

This (unnormalized) state is not separable, i.e., it is entangled.

Definition 2.3. Let HA and HB be Hilbert spaces. A state |ψ〉 ∈ HA ⊗ HB is
separable iff there exist |φ〉A ∈ HA and |φ〉B ∈ HB such that |ψ〉 = |φ〉A⊗ |φ〉B. We
say |ψ〉 is entangled iff it is not separable.

Exercise 2.5. Determine whether the following (unnormalized) states are separable
or entangled:

(1) |0〉|0〉+ |1〉|0〉

(2) |1〉|0〉 − eiπ/42|1〉|1〉

(3) |0〉|0〉|0〉 − |0〉|0〉|1〉

(4) |0〉|0〉|0〉 − |0〉|1〉|1〉

(5) |0〉|1〉|1〉+ |1〉|0〉|0〉

(6) |0〉|0〉|0〉+ |1〉|1〉|1〉

(7) |0〉|1〉|0〉+ |1〉|1〉|1〉. Would you say this is more or less entangled than the state
in (6)?

In fact, there is a whole zoo of “entanglement measures” out there, which allow
one to make statements like “this state is more entangled than that state, at least
with respect to this measure”. While there are many subtleties in entannglement
theory, it is the case that for so-called pure, bipartite state (which is what we are
dealing with here), there are canonical maximally entangled states. The four most
relevant to us are the so-called “Bell states”.

21

Definition 2.4. The four Bell states are the maximally entangled states

|Φ+〉 := 1√
2

(|0〉|0〉+ |1〉|1〉)

|Φ−〉 := 1√
2

(|0〉|0〉 − |1〉|1〉)

|Ψ+〉 := 1√
2

(|0〉|1〉+ |1〉|0〉)

|Ψ−〉 := 1√
2

(|0〉|1〉 − |1〉|0〉) .

Exercise 2.6. Prove that the Bell states form an orthonormal basis of C4.

The Bell states will come up when we prove (a variant of) Bell’s theorem in the
next lecture. They are also key to many quantum mechanical protocols, such as
superdense coding and quantum teleportation.

22

Lecture 3
Quantum Mechanics II

Discussion 3.1. Discuss with your group what you took away from last time.

In the last lecture, we discussed two of four postulates of quantum mechanics,
namely, how we represent states of quantum systems mathematically (unit vectors
in particular Hilbert spaces) and how we describe composite quantum systems (the
tensor product of Hilbert spaces).

In this lecture, we will discuss the other two postulates of quantum mechanics. In
particular, we will discuss how quantum systems evolve and how they are measured.
Time permitting, I will also discuss one way of thinking about this, which I like, but
note that this is by no means the only way of thinking about quantum mechanics.

3.1. The Evolution of Quantum Systems

Postulate 3.1. Let S be a quantum system with Hilbert space HS = CN . Absent
any “measurements” of the system, if at time t1 the state of S is |ψ(t1)〉 and if at
time t2 ≥ t1 the state of S is |ψ(t2)〉, then there exists an N ×N unitary matrix U
such that

|ψ(t2)〉 = U |ψ(t1)〉.

In other words, with no measurements, every quantum state |ψ〉 ∈ HS evolves in
time unitarily. This is one form of the Schrödinger equation.

What does this mean?

Definition 3.1.

• An N ×N complex-valued matrix U is unitary iff U−1 = U † := (U∗)T .

• U(N) := {N ×N unitary matrices U}. With matrix multiplication, U(N)
forms a group (in fact a Lie group) called the unitary group of order N .

23

• SU(N) := {N ×N unitary matrices U with detU = 1}. With matrix multi-
plication, SU(N) also forms a (Lie) group called the special unitary group of
order N .

Example 3.1. The following matrices are unitary:

• IN (the N ×N identity),

• the T or π/8 gate:

T :=
(

1 0
0 eiπ/4

)
, T † =

(
1 0
0 e−iπ/4

)
,

• the Hadamard gate:
H := 1√

2

(
1 1
1 −1

)
= H†,

• the S or phase gate:

S := T 2 =
(

1 0
0 i

)
, S† =

(
1 0
0 −i

)
,

• the X, Y , and Z Pauli matrices:

X :=
(

0 1
1 0

)
= X†, Y :=

(
0 −i
i 0

)
= Y †, and Z :=

(
1 0
0 −1

)
= Z†,

• the SWAP gate

SWAP :=


1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 0

 = SWAP†,

• and the CNOT gate

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = CNOT†.

Exercise 3.1.

24

(i) What are U(1) and SU(1) geometrically?

(ii) Let U ∈ U(N) and |ψ1〉, |φ1〉 ∈ CN . If |ψ2〉 = U |ψ1〉 and |φ2〉 = U |φ1〉, prove
that

〈φ2|ψ2〉 = 〈φ1|ψ1〉.

Conclusion 3.1. This last exercise is important. It reveals that unitary maps
preserve the inner-product of a Hilbert space. Therefore, unitary maps are the
structure-preserving maps on Hilbert spaces, in the same way that bijective maps
are the structure-preserving maps on sets, homeomorphisms are the structure-
preserving maps on topological spaces, homomorphisms are the structure-preserving
maps on groups, and so forth.

Fact 3.1.

(i) With matrix multiplication, both U(N) and SU(N) are groups for all N ≥ 1.1

(ii) If U ∈ U(N) and λ is an eigenvalue of U , then λ = eiθ for some θ ∈ [0, 2π).

3.2. Application: Quantum Computers

We will formally discuss what a quantum computer is in a few lectures. At a high
level, though, a quantum computer is simply a map that takes as input a bunch of
qubits prepared in a particular state |ψ〉 ∈ C2n, and outputs another state |φ〉 ∈ C2n.
Overall, a quantum computer looks like:

|ψ〉 quantum
computer |φ〉

Therefore, a quantum computer simply evolves in time the state |ψ〉 to a differ-
ent state |φ〉. Consequently, there exists a unitary operator UQC ∈ U(2n) that
implements

|φ〉 = UQC|ψ〉.

In other words, every quantum computer is a unitary operator. Exactly what unitary
operator will have to wait.

1Recall, a group is a pair (G, ·), where G is a set and · : G×G→ G is a binary operation, such
that the operation is associative, G has an identity element, and G is closed under inverses.

25

3.3. Observables and Projective Measurements

Definition 3.2. An N ×N complex-valued matrix M is Hermitian iff

M = M † := (M∗)T .

Claim 3.2. Every Hermitian matrix M has only real eigenvalues.

Proof. Let λ be an eigenvalue of M with eigenvector |λ〉. Then,

M |λ〉 = λ|λ〉 and 〈λ|M † = 〈λ|M = λ∗〈λ|.

Thus, on one hand,
〈λ|M |λ〉 = λ〈λ|λ〉.

On the other hand,
〈λ|M |λ〉 = 〈λ|M †|λ〉 = λ∗〈λ|λ〉.

By definition, every eigenvector |λ〉 6= 0. Therefore, 〈λ|λ〉 6= 0, so

λ = λ∗,

as desired. �

Theorem 3.3 (Spectral Decomposition of Hermitian Operators). Let M be a
Hermitian operator on CN with (real) eigenvalues λ1, . . . , λN and eigenvectors
|λ1〉, . . . , |λN〉, respectively. Then,

M =
N∑
i=1

λiΠi,

where Πi := |λi〉〈λi| is the projector onto the |λi〉 subspace of CN .

Real numbers are what we see when we measure things in the real world. For this
and other reasons, Hermitian operators are equated with “observables of quantum
systems”.

Postulate 3.2. Let S be a quantum system with Hilbert space HS = CN . To
“measure” S means to apply a (not necessarily unitary) Hermitian operatorM to the
state of S.2 If S is in state |ψ〉 and if M = ∑

i λiΠi is M ’s spectral decomposition,
then the probability of measuring S to be in state |λi〉 is got by the Born rule:

Pr[λi] := Pr[state(S) = |λi〉] = 〈ψ|Πi|ψ〉.

2An example of a non-unitary Hermitian operator is the projector |0〉〈0| =
(

1 0
0 0

)
.

26

Immediately after the measurement, the state of S “collapses” to

Πi|ψ〉√
Pr[λi]

.

Example 3.2. Let S be a qubit in the superposition state |ψ〉 = α|0〉+ β|1〉. We
will perform a computational basis measurement, which means to measure S using
the Z Pauli operator,3 whose spectral decomposition is

Z =
(

1 0
0 −1

)
= (+1)|0〉〈0|+ (−1)|1〉〈1|.

Thus, we see that the computational basis states are exactly the eigenvectors of Z,
which is why this is called a “computational basis measurement”.

Measuring S in the computational basis, we obtain that the state of S is |0〉 (the
+1 eigenstate of Z) with probability

Pr[state(S) = |0〉] = 〈ψ|(|0〉〈0|)|ψ〉
= |α|2.

In this case, the state collapses to

(|0〉〈0|)|ψ〉
|α|

= eiθ|0〉,

where eiθ = α
|α| .

On the other hand, we obtain that the state of S is |1〉 (the −1 eigenstate of Z)
with probability

Pr[state(S) = |1〉] = 〈ψ|(|1〉〈1|)|ψ〉
= |β|2.

In this case, the state collapses to

(|1〉〈1|)|ψ〉
|β|

= eiθ
′
|1〉,

where eiθ′ = β
|β| .

3Physically, this corresponds to measuring the “z-spin” of S, which is what I meant by “color”
in the first lecture.

27

We have now learned what the meaning of the coefficients or “amplitudes” in a
quantum state vector mean. They correspond to the probability density of seeing
the quantum system in a particular basis state.

Example 3.3. Let S be a qubit in the superposition state |ψ〉 = α|0〉+ β|1〉. We
will perform an X measurement of the system.4 The spectral decomposition of X is

X =
(

0 1
1 0

)
= (+1)|+〉〈+|+ (−1)|−〉〈−|

where

|+〉 := 1√
2

(|0〉+ |1〉) (“x-spin up”)

|−〉 := 1√
2

(|0〉 − |1〉) (“x-spin down”).

In this basis,
|ψ〉 = α + β√

2
|+〉+ α− β√

2
|−〉.

Measuring S in the X basis, we obtain that the state of S is |+〉 (up along the
x-axis, which is the +1 eigenstate of X) with probability

Pr[state(S) = |+〉] = 〈ψ|(|+〉〈+|)|ψ〉

= |α + β|2

2
In this case, the state collapses to

√
2

|α + β|
(|+〉〈+|)|ψ〉 = eiθ|+〉,

where eiθ = α+β
|α+β| .

On the other hand, we obtain that the state of S is |−〉 (down along the x-axis,
which is the −1 eigenstate of X) with probability

Pr[state(S) = |−〉] = 〈ψ|(|−〉〈−|)|ψ〉

= |α− β|
2

2
4Physically, this corresponds to measuring the “x-spin” of S, which is what I meant by “hardness”
in the first lecture.

28

In this case, the state collapses to
√

2
|α− β|

(|−〉〈−|)|ψ〉 = eiθ
′
|−〉,

where eiθ′ = α−β
|α−β| .

3.4. Distinguishing Quantum States

Measuring quantum states is the only way we can “see” them and thereby obtain
classical data from them. It is natural to wonder which states are “different” in this
regard, in the sense that there is some measurement that we can do to tell them
apart.
Definition 3.3. Two states |ψ〉, |φ〉 ∈ H are operationally equivalent iff there
exists θ ∈ [0, 2π) such that |ψ〉 = eiθ|φ〉. We shall write |ψ〉 ∼ |φ〉 to denote this
equivalence.
Discussion 3.2. Why does this make sense? If θ ∈ (0, 2π), are the (unnormalized)
states

|0〉+ |1〉 and |0〉+ eiθ|1〉
really operationally inequivalent? What do you remember from last year?
Theorem 3.4 (The Helstrom–Holevo Bound). Let S be a quantum system that is
either in state |ψa〉 or |ψb〉. The probability of correctly inferring the state of S from
a single measurement of its state is at most 1

2(1+sin θ), where θ = arccos |〈ψa|ψb〉|.5
Moreover, this bound is tight, because the Hermitian operator

M = |ψa〉〈ψa| − |ψb〉〈ψb|
achieves it.
Corollary 3.5.

• If |ψ〉 ∼ |φ〉, then θ = 0, so one cannot experimentally distinguish these states
even in principle (because one gets 50-50 statistics).

• If |ψ〉 6∼ |φ〉, then θ 6= 0, so one can, in principle, eventually distinguish these
states with enough measurements of M .

• If 〈ψa|ψb〉 = 0, then θ = π/2, so one can distinguish the states with probability
1 with just a single measurement of M .

5Note that the range of arccos is [0, π], so the range of arccos ◦abs is [0, π2].

29

Lecture 4
Quantum Mechanics III

Discussion 4.1. Discuss with your group what you took away from last time.

In the last lecture we talked about two other postulates of quantum mechanics,
both of which concern how quantum states evolve. One way was unitarily, i.e. the
evolution implied by the Schrödinger equation, and the other way was non-unitarily,
i.e. the evolution implied whenever a quantum system is measured.

In this lecture, we will continue this discussion, but we will generalize it to the
evolution of composite systems, such as a bunch of qubits. If time permits, we will
also discuss the Einstein-Podolsky-Rosen (EPR) paradox and one way (but certainly
not the only way) of thinking about measurements and quantum mechanics more
generally.

4.1. The Evolution of Composite Systems

Definition 4.1. Let A and B be NA ×MA- and NB ×MB-dimensional complex-
valued matrices, respectively. The tensor product of A and B,1 denoted A⊗B, is
the NANB ×MAMB-dimensional complex-valued matrix

A⊗B =


a11B a12B · · · a1MA

B
a21B a22B · · · a2MA

B
...

...
. . .

...
aNA1B aNA2B · · · aNAMA

B

 .

Fact 4.1 (Useful Properties of the Tensor Product of Matrices).

(i) (A⊗B)(C ⊗D) = (AC)⊗ (BD)

(ii) (A+B)⊗ C = A⊗ C +B ⊗ C
1Technically this is the Kronecker product, which is a special case of the tensor product.

30

(iii) A⊗ (B + C) = A⊗B + A⊗ C

(iv) (A⊗B)† = A† ⊗B†

Exercise 4.1. Using the rules above, prove the two statements below.

(i) If A ∈ U(N) and B ∈ U(M), then A⊗B ∈ U(NM).

(ii) If A ∈ U(N), B ∈ U(M), |ψ〉 ∈ CN , and |φ〉 ∈ CM , then

(A⊗B)(|ψ〉 ⊗ |φ〉) = (A|ψ〉)⊗ (B|φ〉).

Postulate 4.1. Let S1, . . . , Sm be quantum systems with Hilbert spaces H1 =
CN1, . . . ,Hm = CNm, respectively, so that the composite system S = S1 +S2 + · · ·+
Sm has Hilbert space

HS = HS1+S2+···+Sm

= H1 ⊗H2 ⊗ · · · ⊗ Hm =
m⊗
i=1
Hi

= CN1 ⊗ CN2 ⊗ · · · ⊗ CNm =
m⊗
i=1

CNi

= CN1N2...Nm.

Supposing no subsystem of S is being measured, if at time t1 the state of S is |ψ(t1)〉
and if at time t2 ≥ t1 the state of S is |ψ(t2)〉, then there exists U ∈ U(N1N2 · · ·Nm)
such that

|ψ(t2)〉 = U |ψ(t1)〉.

In other words, every quantum state |ψ〉 ∈ HS evolves in time unitarily.

4.2. Measuring Composite Systems

Postulate 4.2. Let S be a composite quantum system with Hilbert space HS,
and let T be a subsystem of S with Hilbert space HT ⊆ HS. To “measure the
subsystem T of S” means to apply a Hermitian operator M to the subspace HT .
If S is in state |ψ〉 and if M = ∑

i λiΠi is M ’s spectral decomposition, then the
probability of measuring the subsystem T of S to be in state |λi〉 is,

Pr[λi] = 〈ψ|(Πi ⊗ IS\T)|ψ〉,

31

where IS\T denotes the identity operator on the subsystem S\T (i.e., the subsystem
of S that you get when you remove T). Immediately after the measurement, the
state of S “collapses” to

(Πi ⊗ IS\T)|ψ〉√
Pr[λi]

.

Example 4.1 (The EPR Paradox). Consider two people, Alice and Bob, each with
a qubit in hand, that are spatially separated by a distance d. Suppose, further, that
the joint state of their qubits is the entangled Bell state

|Φ+〉 := 1√
2
(
|0〉|0〉+ |1〉|1〉

)
= 1√

2
(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
.

Here, the left ket in each term refers to Alice’s qubit and the right ket refers to
Bob’s qubit.

Suppose Alice performs a computational basis measurement of her qubit and
Bob does nothing. This means that, overall, the Hermitian operator describing the
measurement is

Z ⊗ I2 =
(

1 0
0 −1

)
⊗ I2

=
(
|0〉〈0| − |1〉〈1|

)
︸ ︷︷ ︸
spectral decomp of Z

⊗I2

= |0〉〈0| ⊗ I2 − |1〉〈1| ⊗ I2,

where I2 is the 2× 2 identity matrix.
By the postulate above, the probability that Alice measures her subsystem in

32

state |0〉 (which corresponds to the +1 eigenvalue of Z) is
Pr[Alice measures |0〉] = 〈Φ+|

(
|0〉〈0| ⊗ I2

)
|Φ+〉

= 〈Φ+|
(
|0〉〈0| ⊗ I2

) 1√
2
(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
= 1√

2
〈Φ+|

(
|0〉〈0|0〉 ⊗ I2|0〉+ |0〉〈0|1〉 ⊗ I2|1〉

)
= 1√

2
〈Φ+| (|0〉 ⊗ |0〉)

= 1
2 (〈0| ⊗ 〈0|+ 〈1| ⊗ 〈1|) (|0〉 ⊗ |0〉)

= 1
2 .

In this case, the overall state collapses to
(|0〉〈0| ⊗ I2)|Φ+〉√

1/2
= |0〉 ⊗ |0〉.

On the other hand, the probability that Alice measures her subsystem in state |1〉 is

Pr[Alice measures |1〉] = 〈Φ+|(|1〉〈1| ⊗ I2)|Φ+〉 = 1
2 .

In this case, the overall state collapses to
√

2(|1〉〈1| ⊗ I2)|Φ+〉 = |1〉 ⊗ |1〉.
Thus, the two possible states of the composite system after Alice measures are

|0〉 ⊗ |0〉 with probability 1
2

|1〉 ⊗ |1〉 with probability 1
2 .

Consequently, if Alice measures |0〉, then she knowns with certainty that Bob,
whenever he chooses to measure his side of the system, will see his qubit in state |0〉
as well. This implies that at the instant Alice measures, there becomes a definite
fact of the matter of what state Bob has (either |0〉 or |1〉), and this is despite the
two facts, but actually in no way in contradiction to them, that (1) Bob might be
lightyears away (the distance d between Alice and Bob never showed up in this
calculation) and (2) that before Alice measured, there was no fact of the matter of
what Bob’s state was! Thus, in some way, Alice’s act of measuring her qubit reified
Bob’s qubit, and this occurred faster than the time it would take light to go from
Alice and Bob. This is, in Einstein’s words, “spooky action at a distance”.

33

Discussion 4.2. How do you feel about this? Do you agree with Einstein that this
is “spooky”?

Example 4.2 (Measuring all qubits of a multi-qubit system). Let S be a quantum
system of n qubits that is in the state2

|ψ〉 =
∑

x0,x1,...,xn−1∈{0,1}
αx0,x1,...,xn−1|x0〉|x1〉 · · · |xn−1〉.

We will perform a computational basis measurement on all n qubits, which means to
independently measure each qubit of S using the Z Pauli operator. Overall, then,
we are measuring all n qubits of S using the Hermitian operator

Z⊗n =
n⊗
i=1

Z = Z ⊗ Z ⊗ · · · ⊗ Z︸ ︷︷ ︸
n times

,

which has the spectral decomposition

Z⊗n =
(
|0〉〈0| − |1〉〈1|

)
︸ ︷︷ ︸
spectral decomp of Z

⊗ · · · ⊗
(
|0〉〈0| − |1〉〈1|

)
︸ ︷︷ ︸
spectral decomp of Z

=
∑

x0,x1,...,xn−1∈{0,1}
(−1)x0⊕x1⊕···⊕xn−1Πx0,x1,...,xn−1,

where ⊕ is addition mod 2 and

Πx0,x1,...,xn−1 = |x0〉〈x0| ⊗ |x1〉〈x1| ⊗ · · · ⊗ |xn−1〉〈xn−1|

is the projector onto the |x0〉|x1〉 · · · |xn−1〉 subspace of HS.
Now, by the postulate above, the probability that we measure the state of S to

be |y0〉|y1〉 · · · |yn−1〉 (which corresponds to the (−1)y0⊕y1⊕···⊕yn−1 eigenvalue of Z⊗n)
is

Pr[state(S) = |y0〉|y1〉 · · · |yn−1〉] = 〈ψ|Πy0,y1,...,yn−1|ψ〉
= 〈ψ|

(
|y0〉|y1〉 · · · |yn−1〉

)(
〈y0|〈y1| · · · 〈yn−1|

)
|ψ〉

=
∣∣∣(〈y0|〈y1| · · · 〈yn−1|

)
|ψ〉

∣∣∣2
= |αy0,y1,...,yn−1|2.

2In this example, I do not use the tensor product symbol in the states because it crowds the
notation. This will be the norm going forward, so make sure that this example makes sense!

34

In this case, the state of S collapses to
Πy0,y1,...,yn−1|ψ〉
|αy0,y1,...,yn−1|

= αy0,y1,...,yn−1

|αy0,y1,...,yn−1|
|y0〉|y1〉 · · · |yn−1〉

= eiθ|y0〉|y1〉 · · · |yn−1〉,

where
eiθ = αy0,y1,...,yn−1

|αy0,y1,...,yn−1|
.

This state is operationally equivalent to |y0〉|y1〉 · · · |yn−1〉, so the state of S has
collapsed to |y0〉|y1〉 · · · |yn−1〉.

4.3. One Way of Thinking About This*

Let us take seriously the reductionist idea that every physical system is reducible to
a finite number of quantum systems. This entails that tables, chairs, as well as you
and me are but a vast soup of quarks, electrons, and other Standard Model matter.

In particular, for the experiment where there is an electron e, an electron spin
detector D, and a human H running the detector, there exists Hilbert spaces He,
HD, and HH for the electron, detector, and human. Moreover, there are several
states that the various systems can be in. For example, the electron (or rather its
spin, say) can be |0〉 or |1〉, as we have discussed before. Additionally, the detector
has at least three physically distinguishable states

|ready〉, |spin is 0〉, and |spin is 1〉.

These correspond to the detector being in the mode “ready to measure the electron”,
“the detector has measured the electron to be spin 0 and is reporting it as such”,
and “the detector has measured the electron to be spin 1 and is reporting it as
such”.

Likewise, the human has at least three physically distinguishable states

|sees “ready”〉, |sees “spin is 0”〉, and |sees “spin is 1”〉.

These correspond to the human seeing the detector being in mode “ready”, “spin is
0”, and “spin is 1”, respectively.

How do these states interface with each other? Well, in the overall system which
has Hilbert space He ⊗HD ⊗HH , there are the obvious evolutions

|0〉|ready〉|sees “ready”〉 7→ |0〉|spin is 0〉|sees “spin is 0”〉
|1〉|ready〉|sees “ready”〉 7→ |0〉|spin is 1〉|sees “spin is 1”〉,

35

which correspond to the physical experiment of measuring an electron in the spin
|0〉 and |1〉 states, respectively, and the device and human having readouts of the
measurements. Note, these transformations are necessarily unitary since they are
automorphisms of the Hilbert space He ⊗HD ⊗HH .

But now consider the experiment of measuring an electron in a spin superposition
α|0〉 + β|1〉, where α, β 6= 0. Then, the overall electron, detector, and human
evolution is, by the linearity of quantum mechanics,

(α|0〉+ β|1〉)|ready〉|sees “ready”〉 7→
α|0〉|spin is 0〉|sees “spin is 0”〉+ β|1〉|spin is 1〉|sees “spin is 1”〉.

There is no collapse here, but simply a “larger”, entangled superposition that now
includes the detector and human.

One can continue this reasoning by including the lab, the earth, and the whole
universe in the mix as well, and what one finds is that for every quantum experiment
in which we “measure” a quantum system, the whole universe evolves into a big
superposition of the possible outcomes of that experiment. In this way, there
are “many worlds” created, each with a different outcome. This is the germ of
Hugh Everett’s many-worlds interpretation of quantum mechanics. Note that it
differs from the canonical interpretation in that it predicts that for any quantum
experiment, there is generically more than one measurement outcome.

36

Lecture 5
Qubits, Quantum Encodings, and Bell’s Theorem

Discussion 5.1. Discuss with your group what you took away from last time.

Last lecture, we finished our discussion of the postulates of quantum mechanics.
We also discussed the EPR paradox, which pointed toward some sort of fundamental
non-locality in the structure of quantum mechanics.

In this lecture, we will transition to a more computational point of view of
quantum mechanics, and discuss in detail how to encode classical information into a
quantum state. We will also discuss a nice, geometric way of thinking about qubits
known as the Bloch sphere. If time permits, we will discuss amplitude encodings
and prove Bell’s theorem.

5.1. Bits and Bit Strings

Definition 5.1.

• A classical bit is an element of {0, 1}.

• An n-bit string is an element of the set

{0, 1}n := {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n times

.

• The set of all n-bit strings is1

{0, 1}∗ :=
⋃
n≥0
{0, 1}n.

• The length |x| of a string x ∈ {0, 1}∗ is the number of bits comprising x.

1Here, ∗ is known as the Kleene star operator, which, formally speaking, is a regular expression.

37

Bits are important in computation because more complicated mathematical
objects (integers, graphs, Turing machines, etc.) can be encoded as bit strings.

Example 5.1. Given N ∈ N, let n ∈ N be the number of bits you need to represent
N in binary, i.e., n is the smallest positive integer such that k ≤ 2n.2 Then there
exist x0, x1, . . . , xn−1 ∈ {0, 1} such that

N =
n−1∑
i=0

xi2n−1−i.

In this way, the n-bit string x = x0x1 . . . xn−1 encodes N , where xn−1 is the least
significant bit (LSb) and x0 is the most significant bit (MSb). Incidentally, this
is called the MSb 0 numbering scheme, where the “0” here specifies our indexing
convention that a subscript of 0 denotes the first index.

Given a binary encoding of a mathematical object, a classical, deterministic
computer (like a deterministic Turing machine, which governs complexity classes
like P and PSPACE) can operate on the encoding, and hence on the mathematical
object itself. In general, the procedure look something like:

encoded input
x ∈ {0, 1}∗

classical
computer

encoded output
f(x) ∈ {0, 1}∗

The time and space usage of the classical computer is always regarded as a
function of the length of the encoded input size |x|, as opposed to the “size” or
“value” of the unencoded input. The reason is because the computer only ever “sees”
the encoded object, not the actual, unencoded object. As the next exercise shows,
this point is paramount for computational complexity.

Exercise 5.1. Contrive a simple algorithm that finds a prime factor of a composite
number N ∈ N in time O(N). Is this algorithm really polynomial time?

5.2. Basis Encodings

In quantum computing, we want to manipulate mathematical objects on a quantum
computer. Because of this, we need a way to encode the mathematical object into
a quantum state, so that the quantum computer can act on it. To do this, we will
exploit the following observation.

2In general, you can show that n = blog2(N − 1)c+ 1.

38

Observation 5.1. The set {0, 1} is bijective to the computational basis over C2,
B(2) = {|0〉, |1〉}, where the two possible bijections are

0 7→ |0〉
1 7→ |1〉 and 0 7→ |1〉

1 7→ |0〉.

Obviously, the former is the most natural, so that is what we will use in this course.
This bijection implies that every bit can be encoded into a quantum state.

This observation is a particular case of the following more general observation.

Observation 5.2. For all n, {0, 1}n is bijective to to the computational basis over
C2n,

B(2n) =





1
0
...
0
0


,



0
1
...
0
0


, . . . ,



0
0
...
1
0


,



0
0
...
0
1




.

Consequently, using any of the bijections between these two sets, one can encode
classical data into a computational basis state.

There are 2n! bijections from {0, 1}n to B(2n),3 but arguably the most natural is

x = x0x1 . . . xn−1 7→ |x〉 = |x0x1x2 . . . xn−1〉
:= |x0〉 ⊗ |x1〉 ⊗ · · · ⊗ |xn−1〉,

where each |xi〉 ∈ B(2). We will adopt this encoding convention in this course.

Exercise 5.2.

(1) Let 0n denote the n-bit, all zero string 00 . . . 0. Write |0n〉 in terms of |0〉.

(2) The following state is an “equal superposition” of what?

|ψ〉 =
∑

x∈{0,1}n
αx|x〉

(3) Given y ∈ {0, 1}n, what is the probability that one obtains |y〉 if one measures
all n qubits of |ψ〉 in the computational basis?

3Proof: For the first element in {0, 1}n, there are 2n computational basis states to assign it to,
for the second element in {0, 1}n, there are 2n − 1 computational basis states to assign it to,
etc., for a total of 2n! possible assignments.

39

Definition 5.2. Let G be a mathematical object (e.g., a graph, a number, or a
Turing machine) that has a binary representation xG = x0x1 . . . xn−1. The basis
encoding of G is the quantum state vector

|G〉 = |xG〉
= |x0x1 . . . xn−1〉
= |x0〉 ⊗ |x1〉 ⊗ · · · ⊗ |xn−1〉.

At the end of the day, basis encodings allow us to encode classical data into
quantum states.

Example 5.2. Let N be an integer with binary expansion

N =
n−1∑
i=0

xi2n−1−i.

Then, xN = x0x1 . . . xn−1 encodes N in binary. The basis encoding of N is therefore

|N〉 = |xN〉
= |x0〉|x1〉 · · · |xn−1〉.

In this way, we have encoded the number N into a quantum system of n qubits.

5.3. Qubits and the Bloch Sphere

Qubits constitute the fundamental unit of information in quantum information
theory and quantum computation. Given their importance, it is helpful to have a nice
way of thinking about them. Here, we will derive a useful geometric representation
of qubits called the Bloch sphere, which is named after the physicist Felix Bloch.

Fact 5.1. Let S be a qubit (meaning HS = C2) and let ∼ denotes the “operationally
equivalent” equivalence relation, where |ψ〉 ∼ |φ〉 iff there exists θ ∈ [0, 2π) such
that |ψ〉 = eiθ|φ〉. Then, the set of distinct quantum states that S can be in (i.e.,
the operationally inequivalent states of a qubit) is the quotient set4

∆ =
{
α|0〉+ β|1〉 : α, β ∈ C and |α|2 + |β|2 = 1

}
/ ∼ .

4Given a set S and an equivalence relation ∼, the quotient set S/ ∼ is the set of elements in S
that are inequivalent to each other under ∼. That is, S/ ∼ is the set of equivalence classes of
S under ∼.

40

We would like a visual way to think about this space.

Claim 5.2. If |ψ〉 ∈ ∆, then there exist unique θ, φ ∈ [0, 2π) such that

|ψ〉 ∼ cos θ2 |0〉+ eiφ sin θ2 |1〉.

Proof. If α, β ∈ C such that |α|2 + |β|2 = 1, then there exist unique σ, θ, φ′ ∈ [0, 2π)
such that5

α = eiσ cos θ2 and β = eiφ
′
sin θ2 .

Therefore, if |ψ〉 ∈ ∆, then there exist unique σ, θ, φ′ ∈ [0, 2π) such that

|ψ〉 = eiσ cos θ2 |0〉+ eiφ
′
sin θ2 |1〉

= eiσ
(

cos θ2 |0〉+ eiφ sin θ2 |1〉
)

(φ := φ′ − σ)

∼ cos θ2 |0〉+ eiφ sin θ2 |1〉.

�

This representation lends itself to a rather simple geometric representation of all
operationally distinct qubit states.

Claim 5.3. There is a bijection from ∆ to the unit-sphere in R3.

Proof. The bijection is simply

|ψ〉 7→ (sin θ cosφ, sin θ sinφ, cos θ),

where θ, φ are the unique numbers in [0, 2π) such that

|ψ〉 ∼ cos θ2 |0〉+ eiφ sin θ2 |1〉.

�

Exercise 5.3. Draw the image of this bijection and label the R3 coordinate axes
with a few states like |0〉, |1〉, |+〉 = 1√

2(|0〉+ |1〉), and |−〉 = 1√
2(|0〉 − |1〉).

The image of this bijection (below) is called the Bloch sphere:
5This follows from the polar representation of complex numbers.

41

5.4. Amplitude Encodings*

Discussion 5.2. Can you think of some other way we might encode classical data
into a quantum state?

The most obvious way to encode classical data into quantum states is to do what
we did above—namely, basis encode. However, there is another way.
Definition 5.3. Let a = (a0, . . . , aN−1)T ∈ RN be a non-zero vector with norm
|a| (that may in some way encode some other mathematical object). Then, the
amplitude encoding of a into a quantum state |a〉 ∈ CN is the vector

|a〉 := a0

|a|
|e0〉+ a1

|a|
|e1〉+ · · ·+ aN−1

|a|
|eN−1〉,

where |e0〉, . . . , |eN−1〉 are the computational basis states of CN .
Discussion 5.3. Generally speaking, do you suspect it to be easier to basis or
amplitude encode classical information? Why?

In fact, amplitude encoding is generically harder to achieve, because one needs
very fine control of the unitary that will generate the encoding. For most of this
course, we will therefore focus on basis encodings. That said, many important
quantum algorithms, such as the HHL algorithm for solving systems of linear
equations, utilize an amplitude encoding scheme.

42

5.5. Bell’s Theorem*

Like how we can talk about the up/down spin of a qubit along the x-, y-, and
z-axes, we can use the Bloch sphere to more generally talk about the (θ, φ)-spin of
the qubit.

Definition 5.4. We say a qubit is spin up along the (θ, φ)-axis iff its state is (up
to a global phase)

| ↑(θ,φ)〉 := cos θ2 |0〉+ eiφ sin θ2 |1〉

Likewise, we say a qubit is spin down along the (θ, φ)-axis iff its state is (up to a
global phase)

| ↓(θ,φ)〉 := sin θ2 |0〉 − e
iφ cos θ2 |1〉.

Exercise 5.4.

• Prove that these states form an orthonormal basis of C2.

• Prove that

|0〉 ∼ cos θ2 | ↑(θ,φ)〉+ sin θ2 | ↓(θ,φ)〉

|1〉 ∼ sin θ2 | ↑(θ,φ)〉 − cos θ2 | ↓(θ,φ)〉.

Now, recall from the first lecture the following definition and theorem.

Definition 5.5. Let S be a physical system with measurable properties A, B, and
C, and let

NS(A,B,C) = # times we see S with A,B, and C
NS(A,B, C̄) = # times we see S with A,B, and NOT C

NS(A,B) = # times we see S with A and B,
...

Example 5.3.

• S is a car, A is its speed relative to the road, B is its GPS coordinates, and C
is its color.

43

• S is a star, A is its mass, B is its luminosity, and C is its angular momentum.

• S is an electron, A is its color (a.k.a. its x-spin), B is its hardness (a.k.a. its
y-spin), and C is its z-spin.

Fact 5.4. For all systems S with measurable properties A, B, and C,

NS(A, B̄) +NS(B, C̄) ≥ NS(A, C̄).

Theorem 5.5 (A Version of Bell’s Theorem). Let S be two maximally entangled
electrons, e1 and e2, and consider the measurable properties

• A = the spin of e1 is up along the z-axis,

• B = the spin of e2 is up along the (θ, 0)-axis,

• C = the spin of e2 is up along the (2θ, 0)-axis.

Then, for sufficiently small θ,

NS(A, B̄) +NS(B, C̄) < NS(A, C̄).

Proof. Suppose for contradiction that for all θ ∈ [0, 2π)

NS(A, B̄) +NS(B, C̄) ≥ NS(A, C̄).

This, of course, is what we would expect classically. The electrons e1 and e2 are
maximally entangled, so let us suppose in particular that they are in the Bell state6

|Φ+〉 = 1√
2

(|0〉1|0〉2 + |1〉1|1〉2) .

Fact 5.6 (Verify on your own). For all θ, φ,

|Φ+〉 = 1√
2
(
| ↑(θ,φ)〉1| ↑(θ,φ)〉2 + | ↓(θ,φ)〉1| ↓(θ,φ)〉2

)
.

Therefore,

Pr[B] = Pr[state(e2) = | ↑(θ,0)〉]
= |(I2 ⊗ 〈↑(θ,0) |)|Φ+〉|2

= 1
2 .

6See Lecture 2 for the definition of this and the other three Bell states, as well as the meaning of
the words “maximally entangled”.

44

This implies
Pr[B̄] = 1− Pr[B] = 1

2 ,

so that

NS(A, B̄) = M Pr[A | B̄] Pr[B̄]

= M

2 Pr[A | B̄],

where M is the number of times we run this experiment.
Now, given B̄, i.e., given that

state(e2) = | ↓(θ,0)〉 = sin θ2 |0〉 − cos θ2 |1〉,

then Pr[A | B̄] = sin2 θ
2 . Consequently,

NS(A, B̄) = M

2 sin2 θ

2 .

Similar reasoning establishes that

NS(B, C̄) = M

2 sin2 θ

2 and NS(A, C̄) = M

2 sin2 θ.

Therefore,

NS(A, B̄) +NS(B, C̄) ≥ NS(A, C̄) =⇒ M

2 sin2 θ

2 + M

2 sin2 θ

2 ≥
M

2 sin2 θ

=⇒ 2 sin2 θ

2 ≥ sin2 θ.

Is this true for all θ? Taking 0 < θ � 1 so that sin2 θ ≈ θ2, then

2θ
2

4 ≥ θ2 =⇒ 1
2 ≥ 1,

which is a contradiction! �

What is going on here? There are at least two fundamental assumptions that
went into the statement of the theorem. One, that an electron can simultaneously
have a definite spin about two different axes, and, two, that when we measure the
spin of the electron, there is only one outcome. If you accept the many-worlds
interpretation of quantum mechanics, then this second assumption is false, so you

45

would not expect the theorem to hold, and this result should not be surprising (its
not surprising to me!). On the other hand, maybe you don’t like the many-worlds
interpretation. Let’s see where that leaves you!

You will have to contend with the idea that an electron cannot simultaneously
have a definite spin about two different axes. This entails that, pre-measurement,
there is no fact of the matter of what the electron spin is about any axis. In other
words, pre-measurement, it is impossible to give an accurate, local prescription of
what the spin of the electron is about the (θ, 0), (2θ, 0), etc. axes, because if you
could, then the inequality above would be satisfied. Therefore, it is genuinely the
case (as was suggested in the EPR paradox) that any measurement of the spin
will change what you see the spin to be about the other axes! Because of this,
we say that there are no “local hidden variables” that describe the state of the
electrons. Here, the word “local” is in reference to the fact that the two electrons
in this experiment could be arbitrarily far apart. There is, therefore, a deep degree
of non-locality in non-Everettian quantum mechanics, which is ostensibly at odds
with Einstein’s relativity (but in fact it is not).

46

Lecture 6
The Circuit Model of Classical Computation

Discussion 6.1. Discuss with your group what you took away from last time.

Last time, we saw how to encode classical data into a quantum state. We
also discussed the Bloch sphere, which affords a geometric way of thinking about
(operationally distinct) qubit states.

Today, we will cover the basic notions of classical circuits and formally define the
terms “classical computer” and “efficient classical computer” with respect to the
circuit model of classical computation.

In the next two lectures, we will refine these definitions so that, in a few lectures
from now, we can formally define the terms “quantum computer” and “efficient
quantum computer” with respect to the circuit model of quantum computation.

6.1. Classical Gate Sets and Circuits

Definition 6.1. A classical gate set is a finite set B = {b1, b2, . . . , bt} of Boolean
functions bi : {0, 1}ki → {0, 1}`i, where ki, `i ∈ N are constants.

Example 6.1. {AND,NOT}, where

AND : {0, 1}2 → {0, 1}
: (x0, x1) 7→ x0x1

is the 2-bit logical AND gate and

NOT : {0, 1} → {0, 1}
: x 7→ 1⊕ x

is the 1-bit logical NOT gate (and ⊕ is addition mod 2).

47

Given a classical gate set, we can build circuits over them. The following is a
semi-formal definition of a “circuit”. For a more formal definition, see Arora and
Barak’s textbook (citation in the syllabus), or any book that discusses the circuit
model of classical computation.

Definition 6.2.

• Let B be a classical gate set. An n-to-m-bit classical circuit C over B is a
directed acyclic graph with n sources and m sinks. All other non-source and
non-sink vertices are from B and are called gates.

• The size of C is the number of gates that comprise C.

Diagramatically, an example 3-to-2 bit circuit whose size equals four is:

Note, here (and in all other classical or quantum circuits in this class) it is implicit
that each edge or wire is directed from left to right.

Importantly, we can use circuits to compute functions.

Definition 6.3. If C is an n-to-m bit circuit over B and x ∈ {0, 1}n, then the
output of C on input x, denoted C(x), is got by “flowing” the bits from left to right,
and computing the Boolean functions from B as you go along (example below). We
say C computes f : {0, 1}n → {0, 1}m iff for all x ∈ {0, 1}n, C(x) = f(x).

Example 6.2. The following circuit computes NAND : {0, 1}2 → {0, 1}:

48

Exercise 6.1. What function does the following circuit compute?

6.2. Universal Classical Gate Sets

Among all possible gate sets, some are distinguished because circuits over them can
compute any Boolean function.

Definition 6.4. A classical gate set B is universal (a.k.a. functionally complete)
iff for all f : {0, 1}n → {0, 1}m, there is a circuit over B that computes f .

Discussion 6.2. What are some examples of universal gate sets?

One ostensible example is {AND,NOT}. This is almost right.

49

Fact 6.1. If f : {0, 1}n → {0, 1}, then there is a circuit over {AND,NOT} that
computes f .

Proof Idea: Decompose f into conjunctive normal form (CNF), and then use De
Morgan’s laws to replace all ORs in the CNF with AND and NOT (in particular,
OR(x, y) = NOT(AND(NOT(x),NOT(y)))). �

However, {AND,NOT} is not universal for more general Boolean functions.

Exercise 6.2. Argue that no circuit over {AND,NOT} computes COPY (a.k.a.
FANOUT),1

COPY : {0, 1} → {0, 1}2

: x 7→ (x, x).

The fundamental problem with {AND,NOT} is that neither gate can create
bits. If we could somehow do that, then we can circumvent this issue of NOT
never changing the bit length, and AND always reducing the bit length (which,
incidentally, is how you solve the above exercise). As we have already seen, COPY
does exactly this.

Claim 6.2. {AND,NOT,COPY} is universal.

Proof. If f : {0, 1}n → {0, 1}m, then there exist g0, g1, . . . , gm−1 : {0, 1}n → {0, 1}
such that for all x ∈ {0, 1}n,

f(x) = (g0(x), g1(x), . . . , gm−1(x)),

Since every gi : {0, 1}n → {0, 1}, there is a circuit Ci over {AND,NOT} that
computes it. Now use COPY to distribute the initial bits to each Ci, and then you
compute f , as in the following circuit:

1In fact, it is not hard to prove the following, more general claim: If f : {0, 1}n → {0, 1}m, where
n < m, then no circuit over {AND,NOT} computes f .

50

�

6.3. The Circuit Model of Classical Computation

In computation, we are ultimately interested in functions f : {0, 1}∗ → {0, 1}∗,2
i.e., functions where the input size is not fixed. For example, we are interested
in functions like PRIME : {0, 1}∗ → {0, 1}, which on any input x, outputs 1 if
x encodes a prime and 0 otherwise. To this end, we want a way for a circuit to
compute a function whose input size can vary.

Definition 6.5. A circuit family C over a gate set B is a collection C = {Cn : n ∈
N} of n-to-m circuits Cn over B, where, generally, m is a function of n. On input
x ∈ {0, 1}∗, the output of C is C(x) := C|x|(x). We say the family C computes
f : {0, 1}∗ → {0, 1}∗ iff for all x ∈ {0, 1}∗, C(x) = C|x|(x) = f(x).

Interestingly, circuit families can compute “hard” functions.

Fact 6.3 (HW2). There exists a circuit family over {AND,NOT,COPY} that
solves the (uncomputable) halting problem.

This implies that circuit families are too powerful to be a good model of compu-
tation.3 To reduce their power to a more reasonable level, we will impose what is
known as a “uniformity” condition on the circuit family. The most basic type of
uniformity condition enforces that in a circuit family C = {Cn}, the map n 7→ Cn

2Equivalently, functions f : N→ N, which is equivalent because {0, 1}∗ and N are bijective sets.
3If you are interested in the computational complexity of such families, I encourage you to Google
the complexity class P/poly.

51

is computable. This implies that there is a Python program A such that for all
n ∈ N, A(n) outputs a description of the circuit Cn. Interestingly, by imposing
this condition, uniform circuit families exactly characterize the set of computable
functions.

Fact 6.4. f : {0, 1}∗ → {0, 1}∗ is computable on a deterministic Turing machine
iff there exists a circuit family C = {Cn : n ∈ N} over a universal gate set B such
that:

(i) C computes f ,

(ii) the map n 7→ Cn is computable, i.e., the family C is uniform.

Because of this, uniform circuit families constitute a valid model of computation.
This means we can define the term “classical computer” in terms of them. Altogether,
the following definition constitutes the circuit model of classical computation.

Definition 6.6. A deterministic classical computer is a pair (C,B), where C is a
uniform circuit family over a universal gate set B.

6.4. Efficient Deterministic Classical Computers

In this class, however, we are ultimately interested in the set of functions that
we can compute efficiently (i.e., in polynomial time).4 Therefore, going forward,
we will need a precise definition of what an efficient classical computer is in the
circuit model of classical computation. Thankfully, there is a simple fact that helps
motivate this definition.

Fact 6.5. f : {0, 1}∗ → {0, 1}∗ is computable in polynomial time on a deterministic
Turing machine iff there exists a circuit family C = {Cn : n ∈ N} over a universal
gate set B such that:

(i) C computes f ,

(ii) the map n 7→ Cn is computable in polynomial time on a deterministic Turing
machine, i.e., the family C is P-uniform (a.k.a. polynomial time uniform),

(iii) C is polynomial size, i.e., there is a polynomial p : N→ N such that for all n,
the size of Cn is at most p(n).

4The conflation of “efficient” with “polynomial time” is known as the Cobham-Edmonds thesis.

52

Given this, it is natural to define an efficient deterministic classical computer in
the circuit model of classical computation as follows.

Definition 6.7. An efficient (a.k.a. polynomial time) deterministic classical com-
puter is a pair (C,B), where C is a polynomial size, P-uniform circuit family over a
universal gate set B.

We will discuss efficient deterministic classical computers and the associated
complexity class P in more depth when we discuss computational complexity in a
few lectures.

53

Lecture 7
Randomized Computation

Discussion 7.1. Discuss with your group what you took away from last time.

Last time, we introduced the circuit model of classical computation. In particular,
we saw that a function f : {0, 1}∗ → {0, 1}∗ is computable iff there exists a uniform
circuit family over the universal gate set {AND,NOT,COPY} that computes f .
Additionally, we defined what an efficient, deterministic classical computer is in
terms of the circuit model.

In this lecture, we will generalize these definitions to include randomness. This
is important, because as we will discuss below, quantum computers are inherently
probabilistic, so to compare quantum computation to classical computation, we
need to make classical computers probabilistic as well.

7.1. Quantum Computers are Probabilistic

Recall our basic picture of a quantum computer:

|ψ〉 quantum
computer |φ〉

Here, the quantum computer is a unitary operator, and on input |ψ〉 (which will in
general be some computational basis state |x〉), it outputs a state |φ〉, which can
be written in the computational basis:

|φ〉 =
∑

x∈{0,1}n
αx|x〉.

Therefore, in order to obtain any classical information from this state, we will have
to measure it in the computational basis. But this implies that when measuring
the output of a quantum computer, the bit string we get as output, say y, is only

54

got with a particular probability, namely |αy|2. Thus, in order to fairly compare
quantum computers to classical computers, we have to make classical computers
probabilistic as well.

Discussion 7.2. Intuitively speaking, do you think adding randomness to a classical
computer will make it more or less powerful in terms of the functions it can compute?
What about in terms of how quickly it can compute?

7.2. Probabilistic Classical Circuits

So far, our definition of a classical computer is deterministic. This means that
on every input x, the computer outputs a particular string with probability one.
However, the most powerful notion of practical, classical computer exploits random-
ness. This is necessarily more powerful, because randomness can only add power,
as determinism is a type of randomness.

To get a randomized or probabilistic model of computation from the classical
circuit model is actually very simple, and everything we have learned so far still
applies. The only difference is the addition of “random bits”, which are a certain
number of bits that are drawn uniformly at random from {0, 1}. Pictorially, a
probabilistic (a.k.a. randomized) classical computer looks like:

input x

classical computer probabilistic output

random bits r

In order to formally define the notion of a probabilistic computer, we must first
discuss probabilistic circuits.

Definition 7.1.

• An n-to-m bit probabilistic circuit C with ` ≥ 0 random bits over a gate set B
is an (n+ `)-to-m bit (deterministic) circuit over B.

• On input x ∈ {0, 1}n, the output of C is C(x, r), where r ∼ {0, 1}`, i.e., r is
an `-bit string that is drawn uniformly at random from {0, 1}`. Pictorially,

55

input x ∈ {0, 1}n

(n+ `)-to-m bit
classical circuit
over a gate set B

m-bit probabilistic output

random bits r ∼ {0, 1}`

• On input x, the probability that C outputs y ∈ {0, 1}m is

Pr
r∼{0,1}`

[C(x, r) = y].

• We say C computes f : {0, 1}n → {0, 1}m iff for all x ∈ {0, 1}n,1

Pr
r∼{0,1}`

[C(x, r) = f(x)] ≥ 2
3 .

Of course, this implies that C will sometimes err and output something other
than f(x). This fact is what makes probabilistic computation more powerful, at
least ostensibly.2

Discussion 7.3. Any idea why the 2/3 here is somewhat arbitrary?

7.3. Probabilistic Classical Computers

We will now define the probabilistic analogue of a deterministic classical computer
and the probabilistic analogue of an efficient (a.k.a. polynomial time) deterministic
classical computer. Here, like in deterministic classical computers, we will use the
notion of a circuit family. Because of this, it is important to impose a uniformity

1This type of randomized computation is a Monte Carlo computation, as opposed to a Las Vegas
computation. In particular, we are allowing for the possibility that our circuit outputs an
incorrect output, but that its “runtime” is always fixed. This is in contrast to Las Vegas
algorithms, where the output is always correct, but the runtime is a random variable, so it
can vary wildly. If you are interested in this, a good place to start is in understanding the
differences between the complexity classes ZPP and BPP. (We will discuss BPP when we talk
about quantum computational complexity theory in a few lectures from now).

2I write “ostensibly” here because of the belief that P = BPP (indeed, this is not known).

56

condition so that the families cannot compute uncomputable functions (such as the
halting problem).

Definition 7.2.

• A probabilistic classical computer is a tuple (C,B, s), where C is a uniform
circuit family over B and s : N→ N is a computable function.

• We say (C,B, s) is efficient (a.k.a. polynomial time) iff C is a polynomial size,
P-uniform circuit family and s : N→ N is computable in polynomial time on
a deterministic Turing machine.

• On input x ∈ {0, 1}∗, the output of (C,B, s) is C(x) = C|x|+|r|(x, r), where
r ∼ {0, 1}s(|x|).

• We say (C,B, s) computes f : {0, 1}∗ → {0, 1}∗ iff for all x ∈ {0, 1}∗,

Pr
r∼{0,1}s(|x|)

[
C|x|+|r|(x, r) = f(x)

]
≥ 2

3 .

Observation 7.1. In this definition, the purpose of s is to specify the number
of random bits to use in the computation for inputs x of a particular size. For
example, if no random bits are to be used for all inputs, then s(n) = 0 for all n.
This way, no circuit in the circuit family {Cn} uses randomness. On the other hand,
if we want inputs x of size n to use n42 random bits, then s(n) = n42.

Exercise 7.1. Argue that if f : {0, 1}∗ → {0, 1}∗ is computable by a deterministic
classical computer, then it is computable by a probabilistic classical computer.

Therefore, with regard to the functions they can compute, deterministic classical
computers are at least as powerful as probabilistic classical computers. Importantly,
this claim also goes the other way, which proves that probabilistic classical computers
cannot compute “more” than their deterministic counterparts.

Claim 7.1. f : {0, 1}∗ → {0, 1}∗ is computable by a deterministic classical computer
iff it is computable by a probabilistic classical computer.

Proof Sketch*. You proved the forward direction above. For the other direction,
suppose f is computable by a probabilistic computer (C,B, s). It suffices to contrive
a deterministic computer (C ′,B) that computes f . Roughly put, the construction
is as follows:

57

(i) On input x ∈ {0, 1}n (so that |x| = n, C ′ creates all the strings in {0, 1}s(n),
namely, r0, r1, . . . , r2s(n)−1.

(ii) C ′ copies x 2s(n) many times.

(iii) With the 2s(n) many pairs (x, r0), . . . , (x, r2s(n)−1), C ′ computes Cn+|ri|(x, ri)
for each.

(iv) Finally, C ′ computes the majority output of all of these circuits. Since (C,B, s)
computes f , 2

3s(n)-many of the Cn+|ri|(x, ri) outputs equal f(x). Therefore,
the majority outputs f(x).

Pictorially, this construction is as follows:

�

Therefore, randomness cannot help to compute otherwise uncomputable functions.
Instead, all randomness can possibly do is expedite a deterministic computation.
However, this is not known, and in fact it is generally believed to be false.

Open Problem 7.2. If f : {0, 1}∗ → {0, 1}∗ is computable on an efficient proba-
bilistic classical computer, is f computable on an efficient deterministic classical
computer?

We will discuss the complexity classes P and BPP, which are behind this conjec-
ture, in more depth in a few lectures.

58

7.4. Probability Amplification

Lemma 7.3 (HW 2). Let C be an n-to-m bit probabilistic circuit with ` random
bits that computes f : {0, 1}n → {0, 1}m. If C is run t times on the same input
x ∈ {0, 1}n (but r ∼ {0, 1}` is drawn independently on each run), then the probability
that the majority of the outputs is f(x) is at least 1− e− t

18 .

In particular, if on input x, we simply run the circuit 18|x|k times, where k ∈ N,
then the probability of success satisfies

Pr[majority is f(x)] ≥ 1− 2−|x|
k

.

The function 2−nk is the canonical example of a negligible function, which appears
all over the place in computational complexity and cryptography. This is so because
for any polynomial function poly : N→ N, 2−nk < 1/poly(n) for large enough n.

Altogether, this is to say that just by running a circuit polynomially many times
(so that the whole operation is still a polynomial time operation!), then we can get
the success probability of computing the function exponentially close to one. This
is ultimately why the 2/3 doesn’t actually matter, and why in particular the same
analysis works if we instead replaced 2/3 with 1/2 + δ for any fixed δ > 0. We will
now put this statement more formally.

Claim 7.4 (Probability Amplification). If f is computable by a probabilistic classical
computer (C,B, s) of size T (n), then for all k ∈ N, there is a probabilistic classical
computer (C ′,B, s′) of size poly(n, T (n)) such that for all x ∈ {0, 1}∗,

Pr
r∼{0,1}s′(|x|)

[
C ′|x|+|r|(x, r) = f(x)

]
≥ 1− 2−|x|

k

.

In particular, if f is computable by an efficient probabilistic classical computer
(C,B, s), then for all k ∈ N, there exists an efficient probabilistic classical computer
(C ′,B, s′) such that for all x ∈ {0, 1}∗, the previous equation holds.

Proof Sketch. The construction of (C ′,B, s′) is as follows.

(i) Put s′(n) = 18nks(n), so that r ∼ {0, 1}s′(n) can be written as an 18nk
component tuple r = (r1, r2, . . . , r18nk), where ri ∼ {0, 1}s(n).

(ii) On input x ∈ {0, 1}n (so that |x| = n), C ′ copies x 18nk times, and then pairs
each x with a unique ri. This requires O(nk+1) COPY gates (because we copy
each of the n bits of x 18nk times).

59

(iii) C ′ then computes each Cn+|ri|(x, ri). This takes O(T (n)nk) gates (one for
each of the 18nk pairs (x, ri)).

(iv) Finally, C ′ computes the majority output of all of these circuits and returns
that value. This can be done with poly(n) gates (because one can compute
the majority function in polynomial time on a deterministic Turing machine
using, for example, the Boyer-Moore majority vote algorithm3).

By the lemma above, C ′ computes f(x) with probability at least 1−e−|x|k ≥ 1−2−|x|k .
Moreover, C ′ has size poly(|x|, T (|x|)). Pictorially, this construction looks as follows:

�

Consequently, the probability with which an efficient probabilistic classical com-
puter computes a function can be made exponentially close to one.

3An alternate “trick” is to note that if the outputs are lexicographically ordered (which can be
achieved using your favorite sorting algorithm), then the majority of the strings equals the
median value. This gives another polynomial time way to compute the majority.

60

Lecture 8
Reversible Computation

Discussion 8.1. Discuss with your group what you took away from last time.

Last lecture, we discussed probabilistic classical computers in the circuit model
of classical computation. We motivated this study because quantum computers
are inherently probabilistic, so if we want a fair comparison between classical and
quantum computers, we better look at a probabilistic model of classical computation.

In this last lecture on the classical circuit model, we will frame the circuit model
in such a way so that in a few lectures from now we can generalize it to define
a circuit model of quantum computation. To do this requires making the circuit
model of classical computation reversible.

8.1. Quantum Computers are Reversible

As we’ve said several times now, a quantum computer is ultimately just a map
from one quantum state of one dimension to another quantum state of the same
dimension:

|ψ〉 quantum
computer |φ〉

On pain of violating the unitarity of quantum mechanics, therefore, a quantum
computer is a unitary operator UQC that implements the transformation

|φ〉 = UQC|ψ〉.

One rather bizarre thing to glean from this is the following fact.

Fact 8.1. Every quantum computation is reversible (because U−1
QC = U †QC exists).

61

This is in contrast to classical computers, which are over gate sets that are
generically irreversible. Thus, given that whatever quantum computers are, they
must in general be reversible, it is an interesting exercise to see if every classical
computer can be made reversible. If not, then this would suggest that the functions
that classical and quantum computers can compute are fundamentally different.

8.2. Reversible Gate Sets and Garbage Bits

Definition 8.1. f : {0, 1}n → {0, 1}m is reversible iff f−1 : {0, 1}m → {0, 1}n
exists. This is possible iff f is a bijection, so n = m.

Question 8.1. Are the following functions reversible or irreversible?

• AND

• OR

• ⊕ (XOR, addition mod 2)

• NOT

• COPY

Thus, many important Boolean functions are not reversible. Fortunately, there is
a simple way to make them reversible.

Claim 8.2. Let ⊕ be bitwise XOR.1 For all f : {0, 1}n → {0, 1}m (including
irreversible f), the function

F : {0, 1}n × {0, 1}m → {0, 1}n × {0, 1}m

: (x, a) 7→ (x, a⊕ f(x))

is reversible for all x, a. Moreover, F (x, 0m) computes f(x).

Proof. The inverse of F is F itself (involution!) because

F (F (x, a)) = F (x, a⊕ f(x)) = (x, a⊕ f(x)⊕ f(x)) = (x, a).

To compute f , compute F (x, 0m) = (x, f(x)) and look at the last m bits. �

1That is, for x, y ∈ {0, 1}n with components x0, . . . , xn−1 and y0, . . . , yn−1, respectively, x⊕ y :=
(x0 ⊕ y0) . . . (xn−1 ⊕ yn−1) ∈ {0, 1}n, where here on the right side, ⊕ is the usual, 2-bit XOR.

62

Pictorially, F looks like

x

F

x

a a⊕ f(x)

Definition 8.2. The additional string a is called the ancilla string. The bits that
compose a are ancilla bits, and together they are ancillae.

Example 8.1. To compute AND : {0, 1}2 → {0, 1} reversibly, construct

FAND : {0, 1}2 × {0, 1} → {0, 1}2 × {0, 1}
: (x0, x1, a0) 7→ (x0, x1, a0 ⊕ AND(x0, x1)).

Pictorially,

x0

FAND

x0

x1 x1

a0 a0 ⊕ AND(x0, x1)

Therefore, FAND(x0, x1, 0) = (x0, x1,AND(x0, x1)), i.e.,

x0

FAND

x0

x1 x1

0 AND(x0, x1)

Unfortunately, the reversible counterparts of AND,NOT, and COPY are not the
most natural functions (despite forming a universal, reversible gate set). Rather,
one of the more natural and useful reversible gates is the TOFFLI gate.

Definition 8.3. The TOFFLI gate is the Boolean function

TOFFLI : {0, 1}3 → {0, 1}3

: (x0, x1, x2) 7→ (x0, x1, x2 ⊕ x0x1).

Pictorially,

63

x0

TOFFLI

x0

x1 x1

x2 x2 ⊕ x0x1

Exercise 8.1. Prove TOFFLI is reversible.

Importantly, {TOFFLI} is universal provided that the correct ancillae are used.

Claim 8.3. With two ancilla bits, TOFFLI can compute AND, NOT, and COPY.
Therefore, {TOFFLI} is a universal, reversible gate set.

Proof. The following three circuits establish this claim:

x0

TOFFLI

x0

x1 x1

0 0⊕ x0x1 = AND(x0, x1)

x0

TOFFLI

x0

1 1
1 1⊕ x01 = NOT(x0)

1

TOFFLI

1
x1 x1

COPY(x1)
0 0⊕ 1x1 = x1

�

Shortly, we will use these three identities to make every classical circuit reversible.
For now, however, notice, that in the output of each of these circuits, there is the
function we wanted to compute, e.g., AND(x0, x1) = x0x1 in the first diagram, but
also additional bits, e.g., the bits x0 and x1 in the first diagram. These extra bits
are an inevitable consequence of the reversible nature of the computation. They
are examples of garbage bits.

64

Definition 8.4. A garbage bit is any bit in the output of a reversible computation
that is not a bit in the output of the function being computed.

Classically, garbage bits are no big deal, because they can simply be reset to
any value by using the reversible NOT gate. However, in quantum mechanics,
garbage qubits are a huge deal, because they can be entangled with other parts of
the computation, and so if they are not dealt with properly (i.e., if they are not
somehow unentangled from the rest of the computation), then they can drastically
change what the quantum computer is computing. To mend this issue, we will
begin by seeing what a reversible circuit looks like in general.

8.3. Reversible Circuits

Definition 8.5.

• An n-bit reversible deterministic circuit C with ` ≥ 0 ancilla bits is an (n+ `)-
to-(n+ `) bit deterministic circuit over a reversible gate set B.

• On input x ∈ {0, 1}n, the output of C is C(x, a), where a is an `-bit ancilla
string that generally depends on n.

• We say C computes f : {0, 1}n → {0, 1}m iff there exists an ancilla string
a ∈ {0, 1}` such that for all x ∈ {0, 1}n,

C(x, a) = C|x|+|a|(x, a) = (f(x), g(x, a)).

Here, g : {0, 1}n+` → {0, 1}n+`−m is a garbage function, which groups together
all the garbage bits in the output of the circuit. Pictorially,

input x ∈ {0, 1}n

(n+ `)-to-(n+ `) bit
classical circuit
over a reversible

gate set B

function f(x)

ancilla string a ∈ {0, 1}` garbage g(x, a)

65

Using the fact that TOFFLI can simulate AND,NOT, and COPY, it holds that
every classical circuit can be made reversible.

Claim 8.4. Let C be an n-to-m-bit circuit over {AND,NOT,COPY} of size T
that computes f : {0, 1}n → {0, 1}m. There is an n-bit reversible circuit C ′ over
{TOFFLI} of size T with ` = O(T) ancilla bits that computes f .

Proof Sketch. Replace each gate in C with TOFFLI and the one or two ancilla bits
it takes to simulate the gate being replaced. This new circuit, C ′, has T gates, at
most 2T ancillae, computes f , and is reversible (as each TOFFLI is reversible). �

Exercise 8.2. Consider the three-bit AND,

AND(x0, x1, x2) = x0x1x2.

An irreversible circuit over {AND,NOT,COPY} that computes this is:

Using TOFFLI, make this circuit reversible and find the garbage function.

66

Answer: To make this circuit reversible, we insert TOFFLI for each AND, along
with the appropriate ancilla, which, for each AND, is the bit 0. Overall, the
reversible version of this circuit looks like:

In the output of this circuit, there is the function we wanted to compute—namely,
AND(x0, x1, x2) = x0x1x2—but also the garbage bits x0, x1, x2, and x0x1. Therefore,
the garbage function is

g(x0, x1, x2, 0, 0) = (x0, x1, x2, x0x1).

Interestingly, we can actually reset all of these garbage bits to their original values
in the input of the circuit by “uncomputing” them.

8.4. Uncomputation

It would be nice if we could eliminate the garbage bits in any computation and
only have the functional output appear. Of course, this is impossible in a reversible
circuit, because the input and output size in any reversible circuit must be the
same. Instead, in reversible computation the best we can do is “uncompute” the
garbage bits, which is also sometimes called “Bennett’s trick” after physicist Charles
Bennett. The idea is to exploit the reversibility of the circuit to reset all garbage
bits to their original values.

Definition 8.6. Let C be a reversible circuit that computes the function f :
{0, 1}n → {0, 1}m. The uncomputed version of C is the circuit

67

It is not difficult to see that if C is an n-bit reversible circuit over {TOFFLI}
that has size T , uses ` ancillae, and computes f : {0, 1}n → {0, 1}m, then the
uncomputed version of C has size O(m+ T), uses O(m+ `) ancillae, computes f ,
and is reversible.

8.5. Reversible Classical Computers*

We can now define what a reversible classical computer is in the classical circuit
model of computation, which is basically the same as a deterministic classical
computer, but with the addition of an “ancilla function”.

Definition 8.7.

• A reversible deterministic classical computer is a tuple (C,B, a), where C is
a uniform circuit family over a reversible gate set B and a : N→ {0, 1}∗ is a
computable function.

• We say (C,B, a) is efficient (a.k.a. polynomial time) iff C is a polynomial
size, P-uniform circuit family and a is computable in polynomial time on a
deterministic Turing machine.

• On input x ∈ {0, 1}∗, the output of (C,B, a) is

C(x) = C|x|+|a(|x|)|(x, a(|x|)).

• We say (C,B, a) computes f : {0, 1}∗ → {0, 1}∗ iff for all x ∈ {0, 1}∗,

C(x) = C|x|+|a(|x|)|(x, a(|x|)) = (f(x), g(x, a(|x|))).

68

Here, g : {0, 1}∗ → {0, 1}∗ is the garbage function (i.e., the function that
specifies the garbage bits that are outputted in the computation).

Observation 8.1.

• In this definition, the purpose of a is to specify the ancilla string to use in the
computation for inputs x of a particular size. For example, if a circuit family
only requires the ancilla string 01, then a(n) = 01 for all n (so that every
circuit in the circuit family {Cn} uses the same ancilla string 01). On the
other hand, if we want inputs x of size n to use a particular ancilla string x?
of size n42, then a(n) = x?. Also, we require a to be computable (or efficiently
computable), in order for it to not act what is known as an advice string,
which would allow the computation to compute uncomputable functions (in a
similar way to how non-uniform circuit families can compute uncomputable
functions).

• If NOT is part of the gate set B, then one can always make the ancilla string
an all zero string (because every n-bit string can be made by NOTing the
string 0n appropriately). Indeed, in the quantum setting, it is common to use
the state |0n〉 as the ancilla qubit string.

• Finally, using Bennett’s trick (uncomputation), one can make the garbage
function of any reversible computer output part of the input x or the ancilla
string, so that these values can be reused later. This will be particularly
important in the quantum circuit model. Importantly, this does not add
a significant complexity overhead. In particular, if the original circuit is
polynomial size, then so is the uncomputed version.

Using the ideas in this lecture, it is not difficult to prove the following theorem.

Theorem 8.5. f : {0, 1}∗ → {0, 1}∗ is computable on a (efficient) deterministic
classical computer iff it is computable on a (efficient) reversible deterministic
classical computer.

We note that with all these definitions, it is not difficult to now define a reversible,
probabilistic classical computer. To do this, one does the “obvious” thing and inserts
a random string into the reversible classical computer, and applies the definitions
we learned in the last lecture. Using this modification, one can easily prove the
probabilistic analogue of the above theorem.

69

8.6. Landauer’s Principle*

There is an interesting thermodynamical interest in reversible computation, which
has to do with something called Landauer’s principle.

Landauer’s Principle: If a system (e.g., a computer) is operating at a temperature
T , then the energy needed to erase one bit of information is kBT ln 2, where
kB ≈ 1.38× 10−23 J/K is the Boltzmann constant.

A very rough argument for this is as follows. Consider a system at temperature
T that can be in two states (e.g., a bit). Then, its entropy is kBT ln 2. If you
remove the two states of the system (i.e., erase the bit), then the entropy is zero.
So, kBT ln 2 worth of energy is dissipated into the environment.

Because of this, reversible classical computation presents the possibility of doing
highly energy efficient computation. We will not talk more about this in this course,
but exploring this connection would make a great final project if you are interested.

70

Lecture 9
Quantum Gates

Discussion 9.1. Discuss with your group what you took away from last time.

In the last lecture, we discussed reversible computation in the context of the
circuit model of classical computation. In this lecture, we will begin our study of the
circuit model of quantum computation, which by its very nature is reversible. The
quantum circuit model will eventually lead us to a formal definition of a quantum
computer in the next lecture. Recall how quantum computers are ultimately just a
unitary operator. In this lecture, we will begin discussing the unitary operators
that quantum computers are (or, rather, what unitary operators make them up).

9.1. Single-Qubit Gates

In the classical circuit model, Boolean logic gates are the basic building blocks of
classical circuits. Similarly, quantum gates are the basic building blocks of quantum
circuits. The most basic gate is known as a single-qubit gate.

Definition 9.1. A single-qubit gate U is a unitary operator in U(2).

Example 9.1. Extremely important examples of single-qubit gates include:

• the Hadamard gate,

H = 1√
2

(
1 1
1 −1

)
, H

• the Pauli gates,

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
,

which have the respective circuit diagrams:

71

X Y Z

• the x-rotation gate:

Rx(θ) =
(

cos θ2 −i sin θ
2

i sin θ
2 cos θ2

)
, Rx(θ)

• the y-rotation gate:

Ry(θ) =
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)
, Ry(θ)

• the z-rotation gate:

Rz(θ) =
e−i θ2 0

0 ei
θ
2

, Rz(θ)

• the T gate (a.k.a. the π
8 gate):

T =
(

1 0
0 eiπ/4

)
, T

• and the S gate (a.k.a. the π
4 gate or phase gate):

S =
(

1 0
0 eiπ/2

)
S

Exercise 9.1. Prove that X acts as a logical NOT gate when acting on the compu-
tational basis states |0〉 and |1〉.

There are two ways to compose single-qubit gates (and in fact any more general
gate) in a quantum circuit.

Definition 9.2. Let U1 and U2 be single-qubit gates.

• The sequential composition of U1 and U2 is the matrix product U1U2. Diagra-
matically,

U1U2 = U2 U1

72

Notice how the product order is flipped in the circuit (because, like in classical
circuits, we imagine time as flowing from left to right).

• The parallel composition of U1 and U2 is the tensor product U1 ⊗ U2. Diagra-
matically,

U1 ⊗ U2 =
U1

U2

Fact 9.1 (NC Theorem 4.1 and Exercise 4.10). For all U ∈ U(2), there exists
α, β, γ, δ ∈ [0, 2π) such that

U = eiαRz(β)Rx(γ)Rz(δ).

This is called the x-z Euler decomposition of U . Diagrammatically,

U ∼ Rz(δ) Rx(γ) Rz(β)

(Again, note the order in the circuit, which is opposite to the matrix product in the
statement of the fact!)

9.2. Non-Entangling Multi-Qubit Gates

Definition 9.3. A multi-qubit gate is a unitary U ∈ U(2n) for some n > 1.

There are several types of multi-qubit gates. We will explore these types in this
and the next lecture.

Definition 9.4. A product gate U ∈ U(2n) is any unitary that can be decomposed
into a tensor product of single-qubit gates:

U = U1 ⊗ U2 ⊗ · · · ⊗ Un, Ui ∈ U(2).

For n = 4, this looks diagramatically as follows:

73

U =

U1

U2

U3

U4

Discussion 9.2. Let U ∈ U(2n) be a product gate. If |ψ〉 ∈ C2n is not entangled,
then U |ψ〉 is not entangled. Why?

Therefore, product gates do not create entanglement.

Definition 9.5. The SWAP gate is the 2-qubit gate

SWAP :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Given x, y ∈ {0, 1}, its action on the computational basis state |x〉|y〉 is what you’d
expect:

SWAP|x〉|y〉 = |y〉|x〉.
Diagrammatically, there are two ways to represent the SWAP gate:

SWAP = =

We will use the former notation.

Importantly, this “swapping” behavior of SWAP holds for any product state.

Exercise 9.2. Prove that for all |ψ〉, |φ〉 ∈ C2,

|ψ〉 |φ〉

|φ〉 |ψ〉

i.e.,
SWAP|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉.

74

Discussion 9.3. Suppose I want to SWAP the first and third registers of a circuit.
Call this operation the SWAP1,3 gate. I claim the following is true:

SWAP1,3 := =

i.e.,
SWAP1,3 = (SWAP⊗ I2)(I2 ⊗ SWAP)(SWAP⊗ I2).

Why?

Fact 9.2. In general, it is possible to swap the p and q lines in a large quantum
circuit (i.e., implement SWAPp,q) using a matrix and tensor product of SWAP and
2× 2 identity gates:

SWAPp,q

p

q

:=

p

q

=

75

p

q

Discussion 9.4. If |ψ〉 ∈ C2n is not entangled, then SWAPp,q|ψ〉 is not entangled.
Why?

Therefore, SWAP, and no amount of swapping, can create entanglement.1

9.3. Entangling Multi-Qubit Gates

Definition 9.6. A multi-qubit gate U ∈ U(2n) is entangling iff there exist a
non-entangled (a.k.a. separable) state |ψ〉 ∈ C2n such that U |ψ〉 is entangled.

Fact 9.3. U ∈ U(2n) is entangling iff it cannot be decomposed into a matrix and
tensor product of single-qubit gates and SWAP gates.2

Among the most important type of entangling gate is the controlled gate.

Definition 9.7. Let U be any single-qubit operator. The (1-qubit) controlled-U
gate is the 2-qubit unitary operator

Λ1(U) := |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ U

=
(
I2 0
0 U

)
= I2 ⊕ U.

Diagrammatically,
1However, you can transfer entanglement with SWAP. Look up “entanglement swapping” if you
are interested.

2The proof of this is rather involved, but the idea is to show that the normalizer of SU(2)⊗n
in SU(2n) is the semidirect product of SU(2)⊗n with the symmetric group Sn (the matrix
representation of which is generated by SWAP). See this stack exchange post for more details.

76

https://quantumcomputing.stackexchange.com/questions/31451/building-universal-gate-set-for-sudn-from-universal-gate-set-for-sud?rq=1

Λ1(U) =
U

The qubit on the line with the dot in the above diagram is called the control qubit
and the qubit on the line with U is called the target qubit.

As we will shortly see, controlled operations allow us to conditionally apply a
unitary operation.

Example 9.2.

• Λ1(X) (a.k.a. the controlled-X or controlled-NOT gate),

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = I2 ⊕X

• Λ1(Z) (a.k.a. the controlled-Z gate),

CZ :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = I2 ⊕ Z.

Claim 9.4. Let U be a single-qubit unitary and x, y ∈ {0, 1}. Then,

Λ1(U)|x〉|y〉 = |x〉 ⊗ (U |y〉)

if and only if x = 1.

Proof. The action of Λ1(U) on the computational basis states is:

Λ1(U)|0〉|0〉 = |0〉|0〉
Λ1(U)|0〉|1〉 = |0〉|1〉
Λ1(U)|1〉|0〉 = |1〉 ⊗ (U |0〉)
Λ1(U)|1〉|1〉 = |1〉 ⊗ (U |1〉).

�

77

Therefore, a controlled-U operation allows us to conditionally apply a gate, as
claimed above. We condition on the control qubit and, supposing the condition is
met (namely, the state of the control if |1〉), then the target qubit is affected by U .
Controlled operations appear in almost every interesting quantum algorithm we
know.

Exercise 9.3.

(i) Prove that if x ∈ {0, 1}, then

CNOT|x〉|0〉 = |x〉|x〉.

Conclude that CNOT together with the “ancilla qubit” |0〉 implements COPY.

(ii) Prove that
CNOT|+〉|0〉 = |Φ+〉.

Conclude that CNOT is entangling.

Fact 9.5.

• With SWAP, the lines to which a controlled operation is applied can be rear-
ranged, e.g.,

U

=

U

= U

• This trick also applies to any multi-qubit operation. For example, the control
and target of a controlled operation can be interchanged,

U =
U

More generally, one can speak of “higher dimensional” controlled operations.

78

Definition 9.8. Let U ∈ U(2n). The m-qubit controlled-U operation is the 2n+m ×
2n+m unitary matrix

Λm(U) :=
 ∑
x∈{0,1}m\{1m}

|x〉〈x|
⊗ I2n + |1m〉〈1m| ⊗ U

=
(
I2n(2m−1) 0

0 U

)
= I2n(2m−1) ⊕ U.

Diagrammatically, (for m = 3 control qubits and n = 2 target qubits):

Λ3(U) =

U

Indeed, Λm(U) like the 1-qubit controlled gates from before, except generalized
to m controls. You should try to prove the following fact if you are skeptical of this
claim.

Fact 9.6. Let U ∈ U(2m), x ∈ {0, 1}m, and y ∈ {0, 1}n. Then,

Λm(U)|x〉|y〉 = |x〉 ⊗ (U |y〉)

if and only if x = 1m.

Example 9.3. The main higher dimensional controlled operation we will use in this
course is the three-qubit Λ2(X) gate, which is also called the controlled-controlled-
NOT gate:

CCNOT := (|00〉〈00|+ |01〉〈01|+ |10〉〈10|)⊗ I2 + |11〉〈11| ⊗X

=
(
I6 0
0 X

)
= I6 ⊕X.

Diagrammatically,

79

CCNOT =

Exercise 9.4. For x0, x1, x2 ∈ {0, 1}, prove that

CCNOT|x0x1x2〉 = |x0〉|x1〉|x2 ⊕ x0x1〉,

that is,

|x0〉 |x0〉
|x1〉 |x1〉
|x2〉 |x2 ⊕ x0x1〉

Does this look familiar? Perhaps now you have some idea for how to prove that
quantum computers (whatever they are) can compute anything that a classical
computer can!

We’ll end with an important identity that relates SWAP to CNOT. This makes
a good (albeit simple) exercise.

Fact 9.7. SWAP decomposes into the following product of CNOT gates:

=

Next time, we will discuss the circuit model of quantum computation and formally
define a quantum computer.

80

Lecture 10
The Circuit Model of Quantum Computation

Discussion 10.1. Discuss with your group what you took away from last time.

Last time, we discussed quantum gates, which are the “Boolean gates of quantum
circuits”. In this lecture, we will see exactly how this analogy works, and we
will define a quantum computer with respect to the circuit model of quantum
computation.

10.1. Quantum Circuits

We have now seen a myriad of different quantum gates. In the quantum circuit
model, quantum gates take the role of the fundamental Boolean functions like AND
and NOT.

Definition 10.1. A finite set of quantum gates G is called a quantum gate set (or
just gate set if the “quantum” context is clear).

Example 10.1.

• The Clifford gate set, GClifford := {H,S,CNOT}.

• The Clifford + T gate set, GClifford+T := {T,H, S,CNOT}.

Definition 10.2. A quantum register (or just register if the “quantum” context is
clear) is a collection of qubits.

Given a gate set, we can define quantum circuits over it. Since quantum circuits
are reversible, quantum circuits necessarily use ancilla qubits which comprise the
an ancilla register.

Definition 10.3.

81

• An n-qubit quantum circuit Q over a gate set G with ` ≥ 0 ancilla qubits is an
operator in U(2n+`) that admits the matrix product decomposition

Q = UdUd−1 · · ·U1,

where each Uj ∈ U(2n+`) admits the tensor product decomposition

Uj =
mj⊗
k=1

gk, gk ∈ G ∪ {I2},

where mj ≤ n+ ` (as Uj is an n+ ` qubit unitary).

• Here, d is the depth of Q (the “number of layers” of Q), and the number of
non-identity gates that makeup Q is the size of Q.

• Given an input x ∈ {0, 1}n and an ancilla string a ∈ {0, 1}`, the output of Q
is the quantum state

Q(x, a) = Q|x〉|a〉 =
∑

z∈{0,1}n+`
αz|z〉.

• Given an input x ∈ {0, 1}n and an ancilla string a ∈ {0, 1}`, the probability
that Q outputs y ∈ {0, 1}m, denoted Pr

[
Q(m)(x, a) = |y〉

]
, is the probability

that a computational basis measurement of the first m qubits of Q(x, a) is |y〉.
In particular, with |ψ〉 = Q(x, a),

Pr
[
Q(m)(x, a) = |y〉

]
:= 〈ψ|Πy ⊗I2n+`−m |ψ〉.

• We say Q computes f : {0, 1}n → {0, 1}m iff there exists a ∈ {0, 1}` such that
for all x ∈ {0, 1}n,

Pr
[
Q(m)(x, a) = |f(x)〉

]
≥ 2

3 .

Pictorially, every quantum circuit can be represented as a directed acyclic graph,
where the directedness is from left-to-right, e.g.,

82

In this image, we have also labeled the input register (the collection of qubits that
comprise the input), the ancilla register (the collection of qubits that comprise
the ancillae), the output register (the collection of qubits in the output of the
computation that we want to measure), and the garbage register (the collection of
qubits in the output of the computation that we disregard).

Example 10.2. The following is a 1-qubit quantum circuit Q over {CNOT} with
` = 1 ancilla qubits (initialized to |0〉) that computes COPY : x 7→ (x, x):

|x〉 |x〉
|0〉 |x〉

This circuit has size 1, depth 1, and no garbage register. On input x ∈ {0, 1}, the
probability that Q outputs y = y0y1 ∈ {0, 1}2 is

Pr
[
Q(2)(x, 0) = |y〉

]
= 〈x|〈x|Πy|x〉|x〉
= 〈x|〈x|(|y0〉〈y0| ⊗ |y1〉〈y1|)|x〉|x〉
= 〈x|y0〉〈y0|x〉〈x|y1〉〈y1|x〉

=
1 if x = y0 = y1

0 otherwise.

Therefore,
Pr
[
Q(2)(x, 0) = |COPY(x)〉

]
= 1.

In this case, we say that Q computes COPY exactly.

83

Claim 10.1. Let Q be an n-qubit quantum circuit with ` ≥ 0 ancillas. Then, for
all x ∈ {0, 1}n, all ` ∈ {0, 1}`, and all y ∈ {0, 1}m,

Pr
[
Q(m)(x, a) = |y〉

]
=

∑
w∈{0,1}n+`−m

|αy.w|2,

where . denotes string concatenation. Therefore, the probability that Q outputs
y ∈ {0, 1}m is a marginalized probability, where the marginalization is over the
other n+ `−m-bit garbage strings in the output.
Exercise 10.1. Prove this. As a hint, use the fact that

|ψ〉 = Q(x, a)
=

∑
z∈{0,1}n+`

αz|z〉

=
∑

u∈{0,1}m

∑
w∈{0,1}n+`−m

αu.w|u〉|w〉.

and then compute Pr
[
Q(m)(x, a) = |y〉

]
:= 〈ψ|Πy ⊗ I2n+`−m|ψ〉.

Answer:

Pr
[
Q(m)(x, a) = |y〉

]
:= 〈ψ|Πy ⊗ I2n+`−m|ψ〉

=
∑
u,w

α∗u.w〈u|〈w|
 |y〉〈y|︸ ︷︷ ︸

Πy

⊗I2n+`−m

∑
u′,w′

αu′.w′|u′〉|w′〉


=
∑
u,w

α∗u.w〈u|y〉〈w|
∑

u′,w′
αu′.w′〈y|u′〉|w′〉


=
(∑
w
α∗y.w〈w|

)∑
w′
αy.w′|w′〉


=

∑
w,w′

α∗y.wαy.w′〈w|w′〉

=
∑
w
α∗y.wαy.w

=
∑

w∈{0,1}n+`−m
|αy.w|2.

10.2. The Circuit Model of Quantum Computation

Like in the classical circuit model, to compute functions with arbitrary input sizes
we need a notion of a circuit family. Uniform families then define a quantum

84

computer (as non-uniform families can compute uncomputable functions, as we saw
with deterministic classical circuits).

Definition 10.4.

• A quantum computer is a tuple (Q,G, a), where Q is a uniform family of
quantum circuits over a gate set G, and a : N → {0, 1}∗ is a computable
function.

• We say (Q,G, a) is efficient (a.k.a. polynomial time) iff Q is a polynomial
size, P-uniform circuit family and a is computable in polynomial time on a
deterministic Turing machine.

• On input x ∈ {0, 1}∗, the output of (Q,G, a) is the quantum state

Q(x) = Q|x|+|a(|x|)|(x, a(|x|)).

• We say (Q,G, a) computes f : {0, 1}∗ → {0, 1}∗ iff for all x ∈ {0, 1}∗,

Pr
[
Q(m)(x) = |f(x)〉

]
≥ 2

3 .

Here, m is the number of bits of the string f(x), which is in general a function
of the input size |x|. In other words, m is the number of qubits that comprise
the output register of the quantum computer.

Observation 10.1.

• In this definition, the purpose of a is to specify the ancilla string to use in
the computation for inputs x of a particular size. For example, if a circuit
family only requires the ancilla string 01, then a(n) = 01 for all n (so that
every circuit in the circuit family {Qn} uses the same ancilla state |01〉). On
the other hand, if we want inputs x of size n to use a particular ancilla string
x? of size n42, then a(n) = x?.

• If X is part of the gate set G, then one can always make the ancilla qubits
initialized to |0〉 (because every n-qubit computational basis state |x〉 can be
realized by Xing the state |0n〉 appropriately).

Importantly, quantum computers cannot computer functions that are classically
uncomputable.

85

Fact 10.2 (HW3). f : {0, 1}∗ → {0, 1}∗ is computable by a probabilistic classical
computer iff f is computable by a quantum computer.

On HW3, you will also show that efficient quantum computers can do everything
that efficient classical computers can.

Fact 10.3 (HW3). If f : {0, 1}∗ → {0, 1}∗ is computable by an efficient probabilistic
classical computer, then f is computable by an efficient quantum computer.

However, it is expected that efficient quantum computers can compute functions
that no efficient classical computer can.

Conjecture 10.4. There exists f : {0, 1}∗ → {0, 1}∗ computable by an efficient
quantum computer but not computable by any efficient probabilistic classical com-
puter.

We will discuss this conjecture in more detail in two lectures from now when we
talk about quantum computational complexity and the BPP versus BQP conjecture.
It is also part of the point of this class to give some plausibility to this conjecture
(by showing, for example, that there is an efficient quantum factoring algorithm,
despite there not being any known efficient classical factoring algorithm).

Discussion 10.2. Given that efficient quantum computers can compute anything
that efficient classical computers can, argue that efficient quantum computers can
amplify the 2/3 acceptance probability to be exponentially close to one. Conclude
that the probability amplification theorem holds for quantum computers.

10.3. Quantum Uncomputation*

Suppose f : {0, 1}n → {0, 1}m is exactly computable by an n-qubit quantum circuit
Q with ` ancillas. This means that there is a ∈ {0, 1}` such that for all x ∈ {0, 1}n,

Pr
[
Q(m)(x, a) = |f(x)〉

]
= 1.

Overall, then, the quantum state Q(x, a) is necessarily a product state of the form

Q(x, a) := Q|x〉|a〉 = |f(x)〉|g(x, a)〉,

where |g(x, a)〉 is the n+ `−m qubit garbage state, i.e., the state of the garbage
register.

This function f : {0, 1}n → {0, 1}m has 2n possible inputs, and often times in
quantum computing we are interested in evaluating f at all of these inputs. Of

86

course, classically this takes 2n steps. Quantumly, however, it is possible to do this
in a single step. The idea (which is sometimes called quantum parallelism) is to
input the all zero string 0n, and then apply a layer of Hadamards. This way, the
overall state that is inputted to Q above is the equal superposition 1√

2n
∑

x∈{0,1}n
|x〉

⊗ |a〉.
By linearity, then, the action of Q on this state is

Q

 1√
2n

∑
x∈{0,1}n

|x〉
⊗ |a〉 = 1√

2n
∑

x∈{0,1}n
|f(x)〉|g(x, a)〉.

By inserting this layer of Hadamards and then applying Q, we have now evaluated
f at each possible input! However, the cost is that the output and garbage registers
are entangled (and of course when we measure this state, we will only see f
evaluated at one input). On the surface, this is bad news, because now if the
garbage register is measured (which, if we just ignore the garbage register, happens
thanks to something called the Principle of Implicit Measurement), then the state
will collapse to whatever that measurement reveals, and we lose the superposition
of f evaluated at every input.

To mend this issue, we can apply Bennett’s trick and uncompute the state, which
in this context means to copy the output register to a new register, and then
uncompute the result. However, the no-cloning theorem of quantum mechanics
prevents us from copying any old quantum state. Nevertheless, there is a simple
trick that works, and it relies on the fact that we know what the state we want to
copy looks like.

Recall that the CNOT gate is such that for all x, y ∈ {0, 1},

CNOT|x〉|y〉 = |x〉|y ⊕ x〉.

Therefore, if y = 0, then CNOT copies the value of the computational basis state
to the second qubit, provided, again, that the second qubit is initialized to |0〉. By
inserting an additional ancilla string initialized to |0m〉, we can therefore copy the m
qubits in the output register of a quantum circuit into a different register, and then
uncompute the other registers. More generally, we can insert an additional ancilla
string initialized to |y〉, y ∈ {0, 1}m, and create the state |y ⊕ f(x)〉. This only
works, though, if we know what the states in the register we are copying are (which
means we know their amplitudes, which we do—they are all

√
2−n). Pictorially,

87

With this construction, it is not hard to prove the following fact.

Fact 10.5. Let Q be an n-qubit quantum circuit with ` ancilla qubits that computes
f : {0, 1}n → {0, 1}m exactly. Let Q′ be its uncomputed counterpart, which has
`+m ancilla qubits, and is depicted pictorially above. Then,

Q′
|y〉 ⊗ 1√

2n
∑

x∈{0,1}n
|x〉 ⊗ |a〉

 =
 1√

2n
∑

x∈{0,1}n
|y ⊕ f(x)〉|x〉

⊗ |a〉.
Uncomputation, therefore, allows us to completely reset the original ancilla

register to its original value (and thereby unentangle it from the computation).
Of course, here the input register remains entangled with the output, but that is
manageable (and not always a bad thing, because we might need to reuse the input
later in the computation anyway). We will see explicit examples of uncomputation
in the quantum algorithms that we study later in this course.

88

Lecture 11
Universal Gate Sets and Quantum Compilation

Discussion 11.1. Discuss with your group what you took away from last time.

Last time, we introduced quantum gates sets, quantum circuits, and we formally
defined a quantum computer in the quantum circuit model. In this lecture, we will
introduce the notion of a universal gate set, which is the quantum analogue of a
universal gate set in classical computation (a.k.a. a functionally complete set). To
do this will require some new mathematics, which we now discuss.

11.1. The Operator Norm and Generating Sets

Definition 11.1. Let M be a complex-valued square matrix. The operator norm
of M , denoted ‖M‖op, is1

‖M‖op := max
‖|ψ〉‖=1

‖M |ψ〉‖.

Roughly speaking, the operator norm of M is the maximum factor by which M
can scale a unit vector.

Example 11.1. Take the N ×N identity matrix IN :

‖IN‖op = max
‖|ψ〉‖=1

‖IN |ψ〉‖

= max
‖|ψ〉‖=1

‖|ψ〉‖

= max
‖|ψ〉‖=1

1

= 1.

Intuitively, this makes sense because the identity matrix does not scale any vector.
1Technically, this should be a supremum, but we need not worry about that subtlety here.

89

Exercise 11.1. Prove that for all U ∈ U(N),

‖U‖op = 1.

Importantly, the operator norm is indeed a norm, so it induces a metric or
distance function among all pairs of N ×N complex-valued matrices. This allows
us to formalize a notion of “closeness” among the unitary matrices.

Definition 11.2. Let U and V be N ×N complex-valued matrices. The operator
distance between U and V is the real number

dop(U, V) := ‖U − V ‖op.

Shortly, we will use the operator distance to define a universal quantum gate
set. It will allow us to say if a gate set is able to generate a unitary that is “close”
to the target unitary we are trying to implement. To do this formally, however,
requires one more mathematical notion.

Definition 11.3. Let G be a finite subset of U(N).

(i) The set generated by G is the set

〈G〉 := {p : p is a finite matrix product of elements from G}.

For example,
〈H〉 = {H0, H1, H2, H3, . . . } = {I2, H}.

(ii) We say 〈G〉 is dense in U(N) iff for all ε > 0 and all U ∈ U(N), there exists
p ∈ 〈G〉 such that dop(U, p) < ε. In other words, 〈G〉 is dense in U(N) iff a
finite matrix product p of the elements in G can approximate any unitary
arbitrarily well (with respect to the operator distance).

Exercise 11.2.

(i) Find 〈S〉, where S =
(

1 0
0 i

)
. Is 〈S〉 dense in U(2)?

(ii) Could a finite set G generate U(N)? That is, could 〈G〉 = U(N)?

Consequently, unlike Boolean gates where exact synthesis of any Boolean function
is always possible, the best we can hope for in quantum computing is that our gate
set G can approximate any unitary arbitrarily well. Indeed, as we will now discuss,
this is the usual notion of universality that is employed.

90

11.2. Universality and the Clifford + T Gate Set

Definition 11.4. A gate set G is a universal iff for all ε > 0 and all U ∈ U(2n),
there exists an n-qubit circuit Q over G (with no ancillae) such that dop(U,Q) < ε.

Interestingly, there is a nice sufficient condition for universality, which some even
cite as the definition of universality. It is “nice” in the sense that to get universality,
it suffices to have small, single-qubit gates that are universal, together with at least
one entangling gate (such as CNOT).

Fact 11.1. If G is a gate set that contains an entangling gate E and 〈G ∩ U(2)〉 is
dense in U(2), then G is universal.

We will not prove this fact, but it ultimately follows from the fact that any
unitary U ∈ U(2n) can be decomposed into a circuit consisting of just single-qubit
gates and an entangling gate E of your choice. See Nielsen and Chuang’s Quantum
Computing and Quantum Information for details.

Many important universal gate sets involve the Clifford gate set, GClifford, which
we introduced last lecture,

GClifford := {H,S,CNOT}.

Interestingly, however, GClifford is not universal.

Claim 11.2. GClifford is not universal.

Proof*. Suppose GClifford is universal. Then, for all 0 < ε < 0.16, there exists
Q ∈ 〈H,S〉 such that dop(U,Q) < ε, where U is such that U |0〉 = 1√

3 |0〉 +
√

2
3 |1〉.

To obtain a contradiction, first note that for all θ ∈ [0, 2π),

eiθU |0〉 6∈ S :=
{
|0〉, |1〉, |+〉, |−〉, |+ i〉, | − i〉

}
,

where | ± i〉 = 1√
2(|0〉 ± i|1〉). Now note that all the states in S can be realized by

some Q ∈ 〈H,S〉:2

|0〉 = I2|0〉 |1〉 = HS2H|0〉
|+〉 = H|0〉 |−〉 = S2H|0〉
|+ i〉 = SH|0〉 | − i〉 = S3H|0〉

2Incidentally, the states in S are known as stabilizer states.

91

Finally, note the action of H and S on the states in S:

H|0〉 = |+〉 S|0〉 = |0〉
H|1〉 = |−〉 S|1〉 = i|1〉 ∼ |1〉
H|+〉 = |0〉 S|+〉 = |+ i〉
H|−〉 = |1〉 S|−〉 = S| − i〉

H|+ i〉 = eiπ/4| − i〉 ∼ | − i〉 S|+ i〉 = |−〉
H| − i〉 = e−iπ/4|+ i〉 ∼ |+ i〉 S| − i〉 = |+〉.

Consequently, up to a global phase, no combination of H and S can map a state in
S to a state outside of S. Therefore, for all Q ∈ 〈H,S〉,

dop(U,Q) = max
‖|ψ〉‖=1

‖(U −Q)|ψ〉‖

≥ ‖(U −Q)|0〉‖
≥ min
|φ〉∈S

‖U |0〉 − |φ〉‖

=
∥∥∥∥∥∥ 1√

3
|0〉+

√
2
3 |1〉 − |+〉

∥∥∥∥∥∥
=

√√√√√2−

√√√√2 + 4
√

2
3

≈ 0.169
> ε.

This is a contradiction. �

Despite not being universal, there remains a great deal of interest in circuits over
GClifford (a.k.a. Clifford circuits) largely because of their underlying group theory
(in particular their relationship to the Pauli group), their use in quantum error
correction, and because of the Gottesman–Knill theorem, which proves that Clifford
circuits can be simulated on a classical computer.

Theorem 11.3 (Gottesman–Knill Theorem). If f : {0, 1}∗ → {0, 1}∗ is computable
by an efficient quantum computer over GClifford, then f is computable by an efficient
probabilistic classical computer.

Therefore, Clifford circuits cannot offer any sort of “quantum computational
advantage”, because every function they compute can be computed efficiently

92

classically. Interestingly, however, if we add the T =
(

1 0
0 eiπ/4

)
gate, then the

situation changes drastically.

Fact 11.4. The Clifford + T gate set,

GClifford+T := GClifford ∪ {T} = {T,H, S,CNOT},

is universal.

Proof Idea.

(1) Show that THTH = Rn̂(ηπ), where Rn̂(ηπ) is a rotation about an axis n̂ of
the Bloch sphere by ηπ radians, where (crucially) η is irrational.

(2) Show that HTHT = Rm̂(ρπ), where Rm̂(ρπ) is a rotation about an axis m̂ of
the Bloch sphere, where ρ is irrational and m̂ is linearly independent of n̂.

(3) Conclude that for all β, γ ∈ [0, 2π), there exist k, ` ∈ N such that β ≈ kηπ
(mod 2π) and γ ≈ `ρπ (mod 2π) so that (THTH)k = Rn̂(kηπ) ≈ Rn̂(β) and
(HTHT)` = Rm̂(`ρπ) ≈ Rm̂(γ).

(4) Use the generalized Euler decomposition U = eiαRn̂(β)Rm̂(γ)Rn̂(δ) to approx-
imate any U ∈ U(2) (up to the immaterial global phase eiα). Note that this
decomposition exists because n̂ and m̂ are linearly independent.

�

Interestingly, there is a more general result here.

Fact 11.5. For all k ≥ 1, if U ∈ U(2k) is not a Clifford circuit, then GClifford+U :=
GClifford ∪ {U} is universal.

The proof of this fact is well beyond the scope of this course.3

11.3. Quantum Compilation

Suppose we are given a description of a unitary U ∈ U(N) in terms of single-qubit
gates and an entangling gate, say CNOT. By Fact 11.1, there exists a circuit Q

3But if you’re interested, see this stack exchange post, which summarizes the proof and contains
the relevant references.

93

https://quantumcomputing.stackexchange.com/questions/24385/prove-that-adding-any-non-clifford-gate-to-the-clifford-group-yields-a-universal

over a universal gate set G that approximate U to any accuracy ε > 0 we like. This
statement, however, is an existence statement, it tells us nothing about how to
actually find or compile Q, given the gate set G, the target unitary U , and the error
parameter ε.

Compiling an approximating circuit Q is known as quantum compilation. Among
the most fundamental results in quantum computing is the Solovay-Kitaev theorem,
which proves that quantum compilation is actually not that hard. Below, we present
a somewhat newer version of this result due to Bouland and Giurgica-Tiron, which
(unlike the original Solovay-Kitaev theorem) does not require the set G to be closed
under inverses.

Theorem 11.6 (Inverse-Free Solovay-Kitaev Theorem4). Fix N ≥ 2 and let G be
a finite subset of U(N) whose generating set 〈G〉 is dense in U(N). There exists
a constant c > 0 such that for all ε > 0 and all U ∈ U(N), there are O(logc(1/ε))
gates from G whose matrix product p satisfies dop(U, p) < ε. Moreover, there is a
deterministic classical algorithm to find p in a time that is polylogarithmic in the
parameter 1/ε.

The Solovay-Kitaev theorem allows us to address the problem of whether the
gate set GClifford+T is somehow “better” than any other universal gate set G, or
if all universal gate sets are equally “good”. Classically, every gate set is just as
good as every other, because each can exactly implement the other, so it makes
no difference which you use. But quantumly, we are only every approximating
unitaries, so perhaps there is one gate set that approximates “better” than any
other. The Solovay-Kitaev theorem, however, shows that this is false, and that all
universal gates sets are essentially just as good as any other.

Corollary 11.7. Let Q be an n-qubit circuit over a universal gate set G with ` ≥ 0
ancilla qubits and size T . Then, for all universal gate sets G ′, there exists a constant
c > 0 such that for all ε > 0, there exists an n-qubit circuit Q′ over G ′ with ` ancilla
qubits and size T ′ such that:

(i) T ′ = O(T logc(nT/ε)),

(ii) dop(Q,Q′) < ε.
4Actually, the statement of the Solovay-Kitaev theorem and its inverse-free version are both with
respect to SU(N), not U(N). Recall that SU(N) is the subset of U(N) where the matrices
have unit determinant. This restriction, however, is actually without loss of generality, because
for all U ∈ U(N), there exists θ ∈ [0, 2π) and U ′ ∈ SU(N) such that U ′ = eiθU . Since global
phases like this don’t affect the output statistics of a quantum circuit, it suffices to reason at
the level of SU(N).

94

Moreover, there is a deterministic classical algorithm to find Q′ in a time that is
polylogarithmic in T/ε.

Proof Idea*. Let G = {g1, g2, . . . , gr} and G ′ = {h1, h2, . . . , ht}. Then,

Q = UdUd−1 . . . U1,

where Ui = gi1⊗gi2⊗· · ·⊗gim, m ≤ n, and here each gi is in G∪{I2}. The essential
steps of the proof are now as follows.

(1) Using the Solovay-Kitaev theorem, one can approximate each gi ∈ G by some
product pi of gates in G ′, so that for all i, dop(gi, pi) < ε/(nT). This incurs a
depth cost of O(logc(nT/ε)).

(2) Let U ′i = pi1 ⊗ pi2 ⊗ · · · ⊗ pim and show that5

dop(Ui, U ′i) = dop(gi1 ⊗ gi2 ⊗ · · · ⊗ gim, pi1 ⊗ pi2 ⊗ · · · ⊗ pim)

≤
m∑
k=1

dop(hik , pik).

Then,

dop(Ui, U ′i) ≤
m∑
k=1

dop(hik , pik)

<
m∑
k=1

ε

nT

= m
(ε

nT

)
≤ n

(ε

nT

)
= ε

T
.

5This ultimately follows from induction, the fact that ‖A⊗B −C ⊗B‖op = ‖A−C‖op, and the
fact that by the triangle inequality,

‖A⊗B − C ⊗D‖op = ‖A⊗B −A⊗D +A⊗D − C ⊗D‖
≤ ‖A⊗B −A⊗D‖op + ‖A⊗D − C ⊗D‖op

= ‖B − C‖op + ‖A−D‖op.

95

(3) Show that6

dop(UdUd−1 . . . U1, U
′
dU
′
d−1 . . . U

′
1) ≤

d∑
i=1

dop(Ui, U ′i).

Then,

dop(UdUd−1 . . . U1, U
′
dU
′
d−1 . . . U

′
1) ≤

d∑
i=1

dop(Ui, U ′i)

<
d∑
i=1

ε

T

= d
ε

T

≤ T
ε

T
= ε,

where we’ve used the fact that d ≤ T .

(4) Let Q′ = U ′dU
′
d−1 . . . U

′
1, and conclude that dop(Q,Q′) < ε. Moreover, note

that Q′ can be found in polylogarithmic time in the parameter T/ε since
each gate can be found in this time and we know from the structure of Q
how to compose the gates. Also, note that the depth of Q′ is not d, but
O(d logc(Tn/ε)), because to approximate each of the d matrices U ′i incurs depth
O(logc(Tn/ε)) by the Solovay-Kitaev theorem. Similarly, the overall size of Q′
is T ′ = O(T logc(Tn/ε)), since we approximate each of the T gates in Q using
O(logc(Tn/ε)) gates from G ′.

�

Ultimately, this result implies that efficient quantum computers over a universal
gate set G can compute the same set of functions that efficient quantum computers
over a different universal gate set G ′ can. I encourage you to think about this if
this is not clear to you.

6This ultimately follows from induction, the fact that ‖B(A− C)‖op = ‖B‖op‖A− C‖op, and
the fact that by the triangle inequality,

‖AB − CD‖op = ‖AB − CB + CB − CD‖op

≤ ‖AB − CB‖op + ‖CB − CD‖op

= ‖A− C‖op‖B‖op + ‖B −D‖op‖C‖op.

96

11.4. Computational Universality*

The way we have defined universality was motivated by the definition used in
classical circuits. Namely, a finite set of gates is universal if and only if circuits over
that set can approximate any other gate not in the set. However, at the end of the
day, in a quantum computation all you really care about are the output statistics
of measuring a certain state. For this reason, one could define universality with
respect to a more statistical definition. Indeed, this is another notion of universality
known as computational universality. To define this precisely, however, requires the
following mathematical notion.

Definition 11.5. Let p and q be probability distributions supported on {0, 1}n.
The total variational distance (TVD) between p and q is the quantity

dTVD(p, q) = 1
2

∑
y∈{0,1}n

|p(y)− q(y)| .

It is not difficult to reason that if dTVD(p, q) is small, then the distributions p and
q are similar. Thus, the TVD is a measure of how close two probability distributions
are.

Definition 11.6.

• Given U ∈ U(2n), let

pU(x, y) = 〈x|U †ΠyU |x〉 = |〈y|U |x〉|2

be the probability that on input |x〉, U outputs |y〉.

• A gate set G is computationally universal iff for all ε > 0 and all U ∈ U(2n),
there is a circuit Q over G such that for all x ∈ {0, 1}n,

dTVD
(
pU(x, ·), pV (x, ·)

)
= 1

2
∑

y∈{0,1}n
|pU(x, y)− pV (x, y)| < ε.

In other words, G is computationally universal if and only if circuits over G can
approximate the output statistics (as measured in the computational basis) of any
target unitary U arbitrarily well.

It is natural to wonder how universality as we defined it and computational
universality relate.

97

Fact 11.8 (HW3). If G is universal, then G is computationally universal.

Interestingly, however, reasoning the other way is more difficult, because there
exist unitaries U and V that are close in TVD, but far in operator norm. For
example, with

U = I2n and V =
2n∑
i=1

(−1)δ0,i|i〉〈i|,

where δi,j is the Kronecker delta, it is easy to show that for all x ∈ {0, 1}n,
dTVD(pU(x, ·), pV (x, ·)) = 0 but that dop(U, V) = 2. Therefore, just because two
unitaries have similar output statistics does not mean that they are close in operator
norm. In fact, as you will argue in a second, computational universality does not
imply universality.

An important example of a computationally universal gate set is due to Shi.

Theorem 11.9 (Shi, quant-ph/0205115). {CCNOT, H} is computationally uni-
versal.

Given this, it is actually easy to prove that {CCNOT, H} is not universal.

Exercise 11.3. Argue that {CCNOT, H} is not a universal gate set. (Hint: Think√
−1.)

A fascinating corollary of this discussion is the following, which I’ve stated
informally (but of course you could formalize exactly what this means).

Corollary 11.10. Complex numbers are not necessary for quantum computation.

We will not talk about computational universality any more in this course (save
a mention on HW3). If you are interested in this, though, then understanding Shi’s
paper and the above corollary would make a great final project.

98

Lecture 12
Quantum Computational Complexity Theory

Discussion 12.1. Discuss with your group what you took away from last time.

Last time, we discussed universal quantum gates sets and the Solovay-Kitaev
theorem. That lecture marked the end of our discussing the formal underpinnings
of quantum computation. This lecture serves to set the stage for the second half
of this course, which is on quantum algorithms. To facilitate these forthcoming
algorithmic discussions, in this lecture we will introduce the quantum analogue of
the complexity class BPP, which is the probabilistic analogue of P.

12.1. Languages and Decision Problems

Complexity classes like P and NP are collections of languages.

Definition 12.1.

• A language L is a subset of {0, 1}∗.

• The indicator function of L is the function χL : {0, 1}∗ → {0, 1}, where for all
x ∈ {0, 1}∗,

x ∈ L ⇐⇒ χL(x) = 1.

Evidently, languages correspond to yes/no questions, a.k.a. decision problems,
because asking “is x in L” is equivalent to evaluating χL(x). For this reason, we
say that a (quantum or classical) computer C decides L iff C computes χL.

Example 12.1.

(i) Lpalindrome = {x ∈ {0, 1}∗ : x is a palindrome}

(ii) Lprime = {x ∈ {0, 1}∗ : x encodes a prime number}

99

(iii) Lfactoring = {x.y ∈ {0, 1}∗ : x has a non-trivial divisor that is at most y}1

We will now discuss certain collections of languages, which are based on the types
of computers that can decide them.

12.2. P, BPP, and Friends

Definition 12.2. The class P (“polynomial time”) consists of all languages L for
which there exists an efficient deterministic classical computer (C,B) such that for
all x ∈ {0, 1}∗, C|x|(x) = χL(x).

Question 12.1. Is Lpalindrome ∈ P?

Interestingly, Lprime is also in P, although this is not obvious.

Theorem 12.1 (Agrawal–Kayal–Saxena). Lprime ∈ P.

The class P consists of the languages L that are decidable by efficient deterministic
classical computers. However, as we have said many times before, determinism is
a special case of randomness, so the most powerful, practical notion of classical
computation will exploit randomness. This brings us to the class BPP.

Definition 12.3. The class BPP (“bounded-error probabilistic polynomial time”)
consists of all languages L for which there exists an efficient probabilistic classical
computer (C,B, s) such that for all x ∈ {0, 1}∗,

Pr
r∼{0,1}s(|x|)

[
C|x|+|r|(x, r) = χL(x)

]
≥ 2

3 .

Using the probability amplification theorem, it is possible to boost the 2/3 bound
to be exponentially close to 1 without changing the class.

Question 12.2. Is P ⊆ BPP?

Most suspect that P = BPP because of countless “derandomization” results,
which “take the randomness” out of an efficient probabilistic algorithm so that it
becomes an efficient deterministic algorithm. That said, one problem that we know
is in BPP but (as far as we know) not in P is called polynomial identity testing,
which you can read about on your own time.

1Indeed, if you have an algorithm for this, and you know that N (which has binary expansion x)
has a divisor d such that 1 < d ≤ M ≤ N (where M has binary representation y), then by
using this algorithm and binary search, you can find d.

100

One of the major outstanding questions in theoretical computer science is if
you can factor a number in polynomial time on an efficient probabilistic classical
computer. We think this is impossible, and because of that, for decades we have
based our cryptography on the following conjecture.

Conjecture 12.2. Lfactoring 6∈ BPP.

Let us now transition to another important classical complexity class.

Definition 12.4. The class NP (“non-deterministic polynomial time”) consists of
all languages L for which there exists a polynomial s : N → N and an efficient
deterministic classical computer (C,B) such that for all x ∈ {0, 1}∗,

x ∈ L =⇒ ∃r ∈ {0, 1}s(|x|) : C|x|+|r|(x, r) = 1
x 6∈ L =⇒ ∀r ∈ {0, 1}s(|x|) : C|x|+|r|(x, r) = 0.

Here, r is called a witness, certificate, or proof.

In essence, NP consists of the languages L for which it is easy to verify a given
“proof”. P, on the other hand, consists of the languages L that are easy to “prove”.
Thus, saying P = NP is like saying that finding a proof to a statement is just as
easy as verifying that a given proof is correct. Of course, that seems unlikely, given
our experiences in proving mathematical statements!

Interestingly, there is a simple relationship between NP and efficient probabilistic
classical computers.

Fact 12.3. L ∈ NP iff there exists an efficient probabilistic classical computer
(C,B, s) such that for all x ∈ {0, 1}∗,

x ∈ L =⇒ Pr
r∼{0,1}s(|x|)

[
C|x|+|r|(x, r) = 1

]
> 0

x 6∈ L =⇒ Pr
r∼{0,1}s(|x|)

[
C|x|+|r|(x, r) = 0

]
= 1.

Exercise 12.1.

• Is P ⊆ NP?

• Is Lfactoring ∈ NP?

• Is BPP ⊆ NP?

101

In fact, it is an open question if BPP ⊆ NP. This is largely because in BPP, a
computation can fail for both x ∈ L and x 6∈ L, whereas for NP, the computation
cannot fail for x 6∈ L (in complexity words, there is not “two-sided bounded error”
in NP, but there is in BPP). Nevertheless, most suspect that BPP ⊆ NP, because
most suspect that P = BPP (and we already know that P ⊆ NP).

We will now define two classes with respect to the Turing machine model of
computation, but of course these could be phrased with respect to the circuit model.
If you’re confused by the notion of a “deterministic Turing machine”, it is fine to
think of it as a “deterministic Python program”.

Definition 12.5. The class EXPTIME (“exponential time”) consists of all languages
L for which there is a deterministic Turing machine that decides L in O(2nk) time.

Exercise 12.2.

(i) Is NP ⊆ EXPTIME?

(ii) Is BPP ⊆ PSPACE?

So far, all these classes have concerned the amount of time or computational
steps of the underlying computer. However, there is another resource that is
important in computation, namely, space or memory. Like P, then, we can talk
about computations that can be performed with polynomial space.

Definition 12.6. The class PSPACE (“polynomial space”) consists of all languages
L for which there is a deterministic Turing machine that decides L in O(nk) space.

Exercise 12.3.

(i) Is PSPACE ⊆ EXPTIME?

(ii) Is NP ⊆ PSPACE?

(iii) Is BPP ⊆ PSPACE?2

Given these five classes, we can now state a myriad of open questions about how
they relate.

Open Problem 12.4.
2In fact, it follows from something called the Time Hierarchy Theorem that P 6= EXPTIME.
Therefore, one of the following statements is necessarily true, we just don’t know which
one (although we expect them all to be true): P 6= NP, BPP 6= PSPACE, NP 6= PSPACE,
PSPACE 6= EXPTIME.

102

• Is P = NP? (Literally a million dollar question!)

• Is P = BPP?

• Is BPP ⊆ NP?

• Is NP = PSPACE?

• Is PSPACE = EXPTIME?

Solving any of these problems would cement your name in the history of computer
science. Overall, at least for these five classes, this is what we currently know:

This concludes our brief tour of some of the most important classical complexity
classes. We will now discuss what is unequivocally the most important quantum
complexity class, BQP, which, as we shall see, is the quantum analogue of BPP.

12.3. BQP

Definition 12.7. Let G be a gate set. The class BQP(G) (“bounded-error quantum
polynomial time over the gate set G”) consists of all languages L for which there
exists an efficient quantum computer (Q,G, a) such that for all x ∈ {0, 1}∗,

Pr
[
Q(1)(x) = |χL(x)〉

]
≥ 2

3 .

Importantly, if G is universal, then the class is robust to changes in the gate set.

103

Fact 12.5 (HW4). For all universal gate sets G and G ′, BQP(G) = BQP(G ′).
Because of this fact, the following is a well-defined definition.

Definition 12.8. The class BQP (“bounded-error quantum polynomial time”) is
BQP(GClifford+T).

Like for BPP, the 2/3 in the definition of BQP can be amplified to be exponentially
close to one using the probability amplification theorem. Note, however, that this
is not always the case for BQP(G) for non-universal G.
Question 12.3. Is BPP ⊆ BQP?

We will see in a few lectures from now that you can factor integers on an efficient
quantum computer.
Theorem 12.6 (Shor). Lfactoring ∈ BQP.

Therefore, if Lfactoring 6∈ BPP, then BPP 6= BQP. Moreover, because of this fact,
quantum computers threaten many cryptographic schemes that secure sensitive
data (e.g., your bank account information). At the end of the day, the overwhelming
belief in quantum computing circles is the following conjecture:
Conjecture 12.7. BPP 6= BQP.

Similar to how it is not known how BPP and NP relate, it is not known how BQP
and NP relate.
Open Problem 12.8.

• Is BQP ⊆ NP?

• Is NP ⊆ BQP?

The way we have defined BQP(G) opens up an interesting question. What if we
deliberately consider non-universal G? Could BQP(G) over a non-universal G ever
equal BQP? Interestingly, the answer is yes.
Fact 12.9. If G is computationally universal, then BQP(G) = BQP.3

For weaker choices of G, however, the situation is often different.
Theorem 12.10 (Gottesman–Knill–Aaronson). BQP(GClifford) = ⊕L ⊆ P.

Beyond BQP, one can define quantum analogues of many other classical complex-
ity classes. For example, the class QMA is the quantum analogue of NP. Exploring
this class (or any other quantum complexity class) would make a great final project.

3You have all the tools you need to prove this fact for yourself.

104

12.4. The Limits of BQP

We already know that efficient quantum computers are at least as powerful as
efficient probabilistic classical computers (i.e., BPP ⊆ BQP). But just how powerful
are efficient quantum computers? In other words, what class contains BQP, so
that we can upper-bound the power of efficient quantum computers? A very plain
upper-bound is the following.

Exercise 12.4. Argue that BQP ⊆ EXPTIME.

Therefore, efficient quantum computers cannot compute functions that are not
computable in exponential time on a deterministic Turing machine. In fact, we
can refine this to show that efficient quantum computers cannot compute functions
that are not computable in polynomial space on a deterministic Turing machine.
To do this, we will need the following claim.

Claim 12.11. Let U ∈ U(2n) be such that

U =
m⊗
k=1

gk, gk ∈ GClifford+T ∪ {I2},

where m ≤ n. Then, for all x, y ∈ {0, 1}n, the matrix element 〈y|U |x〉 is exactly
computable in poly(n) space on a deterministic Turing machine.

Proof. By definition,

〈y|U |x〉 = 〈y|
m⊗
k=1

gk|x〉

= 〈y[1]|g1|x[1]〉 ⊗ 〈y[2]|g2|x[2]〉 ⊗ · · · ⊗ 〈y[m]|gm|x[m]〉

=
m∏
i=1
〈y[i]|gi|x[i]〉,

where x[i] is either a 1- or 2-bit substring of x, depending on if gi is a 1- or 2-qubit
unitary, respectively (and similarly for y[i]). The product 〈y[i]|gi|x[i]〉 is at most
a matrix multiplication involving a 1 × 4 dimensional row vector 〈y[i]| times a
4 × 4 dimensional matrix gi times a 4 × 1 dimensional ket vector |x[i]〉. The bit
representation of each of these elements is constant with respect to n. Therefore,
the individual product can be done in constant space, and so one can evaluate all n
products in O(n) space (there are at most n products, as m ≤ n). Multiplying the
results together then incurs poly(n) space, as desired. �

105

Using this result, we can now prove the main result of this lecture.

Claim 12.12. BQP ⊆ PSPACE.

Proof. Let L ∈ BQP. Then, there is an efficient quantum computer (Q,GClifford+T , a)
such that for all x ∈ {0, 1}∗,

Pr
[
Q

(1)
|x|+|a(|x|)|(x, a(|x|)) = |χL(x)〉

]
≥ 2

3 .

To simplify notation, put n = |x| and ` = |a(|x|)|. Then, Q|x|+|a(|x|)| = Qn+` and

Pr
[
Q

(1)
n+`(x, a(n)) = |1〉

]
=

∑
y∈{0,1}n+`−1

〈x.a(n)|Qn+`|1.y〉,

where . denotes string concatenation.
We will show that for all x ∈ {0, 1}∗, one can compute this probability in

polynomial space in n = |x| on a deterministic Turing machine T . Therefore, after
computing it, we will program T to accept (i.e., output 1) if the probability is at
least 2/3, and reject (i.e., output 0) otherwise. This implies L ∈ PSPACE.

To compute the probability in polynomial space, consider the following represen-
tation of Qn+`:

Qn+` = UdUd−1 . . . U1

= UdI2n+`Ud−1I2n+` . . . I2n+`U1

= Ud

 ∑
w0∈{0,1}n+`

|w0〉〈x0|

Ud−1

 ∑
w1∈{0,1}n+`

|w1〉〈w1|

 . . .
 ∑
wd∈{0,1}n+`

|wd〉〈xd|

U1

=
∑

w0,w1,...,wd∈{0,1}n+`
Ud|w0〉〈w0|Ud−1|w1〉〈w1| · · · |wd〉〈wd|U1.

Consequently,

〈x.a(n)|Qn+`|1.y〉
=

∑
w0,w1,...,wd∈{0,1}n+`

(
〈x.a(n)|Ud|w0〉

)(
〈w0|Ud−1|w1〉

)
· · ·

(
〈wd|U1|1.y〉

)
.

By the previous claim, each term in parenthesis can be computed in polynomial
space, so, by keeping a counter, the overall sum can be computed in polynomial
space as well. Summing over all y ∈ {0, 1}n+`−1 can then be done in polynomial
space as well. It follows, therefore, that we can compute the probability from before
in polynomial space, which implies that L ∈ PSPACE, as desired. �

106

In conclusion, efficient quantum computers cannot compute functions that are not
computable in polynomial space on a deterministic Turing machine. In fact, there
are better upper-bounds on BQP (such as BQP ⊆ PP), and exploring those would
make a great final project. The following diagram summarizes the relationship
between the various complexity classes that talked about in this lecture.

This concludes our study of the structural complexity of quantum computing. In
the next several lectures, we will see explicit problems that are in BQP (or a related,
oracle-based class) that are believed to not be in BPP (or a related, oracle-based
class). It turns out all these problems are solvable on an efficient quantum computer
basically because quantum computers can implement a particular unitary operator
rather efficiently: the quantum Fourier transform. We will learn more about this in
a few lectures. Next time, we will study the unstructured search problem, which is
the context of Lov Grover’s eponymous algorithm.

107

Lecture 13
Grover’s Algorithm

Discussion 13.1. Discuss with your group what you took away from last time.

Last time, we discussed quantum computational complexity theory. There,
we introduced many complexity classes, including BPP and BQP. These classes
consist of the languages that are decidable on efficient classical and quantum
computer, respectively. The belief that underlies most of quantum computing is
that BPP 6= BQP, and in this lecture we will begin our study of quantum algorithms
that support this conjecture.

13.1. Oracles and the Query Complexity Paradigm

Definition 13.1. Let f : {0, 1}∗ → {0, 1}∗ be a (not necessarily computable!)
function. We call a (classical or quantum) operation Of that computes f an oracle
for f . Quantumly, Of is a unitary operation for each input size n, so it is defined
to act in the canonical, reversible way on computational basis states:

Of : |x〉|a〉 7→ |x〉|a⊕ f(x)〉.

Notice, in this definition we have not specified how difficult it is to compute f .
This is on purpose, because it may, in fact, be very difficult (or impossible!) to
compute f . This is the paradigm of query complexity, in which we assume we have
some black box function (the oracle), and we do not care at all about how difficult
it is to implement the black box. Instead, what we care about is minimizing the
number of calls to the black box, i.e., to the oracle (or subroutine, if you like) Of . As
we will see, in many problems, quantum computers require provably fewer queries
to f than any classical computer, basically because of the quantum parallelism idea
we discussed in a previous lecture.

108

13.2. Unstructured Search

Grover’s algorithm solves the following problem, which is called unstructured search.

The Unstructured Search Problem
Input: A function f : {0, 1}n → {0, 1} as an oracle such thatf(x) = 1 if x = x? ∈ {0, 1}n

f(x) = 0 otherwise.

Output: x? (the “needle in the haystack”) by querying f .

Exercise 13.1. Argue that, on average, every classical probabilistic algorithm that
solves unstructured search by querying f must make Ω(N) queries.

As we will now see, however, it is possible to do much better quantumly.

13.3. Grover’s Algorithm

To solve unstructured search on a quantum computer, first recall the quantum
oracle we have for f :

Of |x〉|a〉 = |x〉|a⊕ f(x)〉.

Importantly, by using superposition, we can change the effect this oracle has on
our quantum states.

Exercise 13.2. Prove that for all x ∈ {0, 1}n, Of |x〉|−〉 = (−1)f(x)|x〉|−〉.1

1This is an example of something called phase kickback.

109

Answer:

Of |x〉|−〉 = Of |x〉
1√
2

(|0〉 − |1〉)

= 1√
2

(Of |x〉|0〉 − Of |x〉|1〉)

= 1√
2

(|x〉|f(x)〉 − |x〉|1⊕ f(x)〉)

= |x〉 1√
2

(|f(x)〉 − |1⊕ f(x)〉)

=
|x〉|−〉 if f(x) = 0
−|x〉|−〉 if f(x) = 1.

= (−1)f(x)|x〉|−〉.

For this reason, we can think of the oracle as only acting on the input register

Of : |x〉 7→ (−1)f(x)|x〉.

This is because the ancilla register is not entangled with the input register (so we
can just ignore the ancilla in the analysis of the computation). Indeed, we will do
this in the following analysis (though we will include the ancilla in the set up to
Grover’s algorithm). Context should make it clear which version of the oracle we
mean.

We now introduce Grover’s algorithm for solving the unstructured search problem.

Grover’s Algorithm:
1. Prepare n+ 1 qubits in the state |0n〉|1〉.
2. Apply H⊗n+1.
3. Perform the following Grover iteration r times:

(i) apply Of ,
(ii) apply H⊗n on the first n qubits,
(iii) apply the Grover diffusion operator 2|0n〉〈0n| − IN on the first n

qubits,
(iv) apply H⊗n on the first n qubits.

4. Measure the first n qubits in the computational basis.

As a circuit, Grover’s algorithm is simply:

110

repeat r times

n|0n〉 H⊗n

Of
H⊗n 2|0n〉〈0n| − IN H⊗n

|1〉 H

Here, r measures the number of times that we call the oracle Of . We will see that
r = O(

√
N) suffices for the output to be |x?〉 with probability exponentially close

to one. Note, also, that a single Grover iteration (step 3) corresponds to applying
what is sometimes called the Grover operator,2

G := H⊗n(2|0n〉〈0n| − IN)H⊗nOf
= (2|Φ〉〈Φ| − IN)Of ,

where
|Φ〉 = H⊗n|0n〉 = 1√

N

∑
x∈{0,1}n

|x〉.

In this lecture, we will ultimately prove the following theorem.

Theorem 13.1. Using a quantum computer (namely, that specified by Grover’s
algorithm), it is possible to solve the unstructured search problem with probability
1−O(2−n) using only O(

√
N) = O(2n/2) queries to f . This is quadratically fewer

than the classical lower bound.

13.4. Correctness of Grover’s Algorithm

To prove that Grover’s algorithm does what it says, we will begin by building some
geometric intuition behind the algorithm, which will assist in its analysis. To do
this, we will start with a simple exercise.

Exercise 13.3. Let |ψi〉 be the state in Grover’s algorithm at step i.

• Find |ψ1〉 and |ψ2〉

• If
|α〉 = 1√

N − 1
∑

x∈{0,1}n
x 6=x?

|x〉,

2Here, we are using the “phase” interpretation of the oracle Of , in which it ignores the ancilla.

111

prove that

|Φ〉 =
√
N − 1
N
|α〉+ 1√

N
|x?〉.

Corollary 13.2. |Φ〉 is a two dimensional vector in the two-dimensional subspace
of C2n that is spanned by |α〉 and |x?〉.

Pictorially,

Here, θ0 ∈ [0, 2π) is such that

cos θ0 =
√
N − 1
N

sin θ0 = 1√
N

so that, by the previous exercise,

|Φ〉 = cos θ0|α〉+ sin θ0|x?〉.

In what follows, we will analyze geometrically what happens in step 3 of Grover’s
algorithm, and deduce the number of iterations we need to do to find |x?〉 with high
probability. We start by understanding how the oracle acts in this two dimensional
representation.

Claim 13.3. If |ψ〉 = cos θ|α〉+ sin θ|x?〉, then

Of |ψ〉 = cos θ|α〉 − sin θ|x?〉.

Pictorially,

112

Proof. By definition,

Of |α〉 = |α〉
Of |x?〉 = −|x?〉,

so the result follows from linearity. �

We will now prove one more geometric fact, but this time about the Grover
operator G.

Claim 13.4. Let G = (2|Φ〉〈Φ| − IN)Of be the Grover operator. Then,

G|x?〉 = cosω|x?〉 − sinω|α〉
G|α〉 = sinω|x?〉+ cosω|α〉,

where

sinω = 2
√
N − 1
N

cosω =
√

1− sin2 θ = 1− 2
N
.

Proof. We find:

G|x?〉 = −(2|Φ〉〈Φ| − IN)|x?〉 by Of |x?〉 = −|x?〉
= −2|ψ〉〈Φ|x?〉+ |x?〉

= − 2√
N
|Φ〉+ |x?〉 by 〈Φ|x?〉 = 1√

N
.

113

Now using the formula for |Φ〉 from before,

G|x?〉 = − 2√
N
|Φ〉+ |x?〉

= − 2√
N

√N − 1
N
|α〉+ 1√

N
|x?〉

 + |x?〉

= −2
√
N − 1
N

|α〉 − 2
N
|x?〉+ |x?〉

= −2
√
N − 1
N

|α〉+
(

1− 2
N

)
|x?〉

= − sinω|α〉+ cosω|x?〉.

Similarly, since

〈Φ|α〉 =
 1√

N

∑
x∈{0,1}n

〈x|
 1√

N − 1
∑
x′ 6=x?

|x′〉


= 1√
N(N − 1)

∑
x∈{0,1}n
x′ 6=x?

〈x|x′〉

= 1√
N(N − 1)

∑
x 6=x?
〈x|x〉

= N − 1√
N(N − 1)

=
√
N − 1
N

,

it holds that

G|α〉 = (2|Φ〉〈Φ| − IN)|α〉 by Of |α〉 = |α〉
= 2|Φ〉〈Φ|α〉 − |α〉

= 2
√
N − 1
N
|Φ〉 − |α〉.

114

Now using the formula for |Φ〉 from before,

G|α〉 = 2
√
N − 1
N
|Φ〉 − |α〉

= 2
√
N − 1
N

√N − 1
N
|α〉+ 1√

N
|x?〉

− |α〉
=
(

2N − 1
N

− 1
)
|α〉+ 2

√
N − 1
N

|x?〉

=
(

2− 2
N
− 1

)
|α〉+ sinω|x?〉

=
(

1− 2
N

)
|α〉+ sinω|x?〉

= cosω|α〉+ sinω|x?〉.

�

Corollary 13.5. If |ψ〉 = cos θ|α〉+ sin θ|x?〉, then

G|ψ〉 = cos(θ + ω)|α〉+ sin(θ + ω)|x?〉

Pictorially,

Proof. This follows from the previous result and elementary trigonometry:

G|ψ〉 = G(cos θ|α〉+ sin θ|x?〉)
= cos θ(G|α〉) + sin θ(G|x?〉)
= cos θ(sinω|x?〉+ cosω|α〉) + sin θ(cosω|x?〉 − sinω|α〉)
= (cos θ cosω − sin θ sinω)|α〉+ (cos θ sinω + sin θ cosω)|x?〉
= cos(θ + ω)|α〉+ sin(θ + ω)|x?〉.

�

115

Therefore, the Grover operation rotates a given state closer to the target state
|x?〉. We can use this to our advantage to now find |x?〉 with high probability.

Claim 13.6. If r =
⌊
π
4
√
N
⌉
,3 then the probability that we measure Gr|Φ〉 to be in

state |x?〉 is 1−O(1/N) = 1−O(2−n).

Proof. Since
|Φ〉 = cos θ0|α〉+ sin θ0|x?〉,

by the previous corollary

Gr|Φ〉 = cos(θ0 + rω)|α〉+ sin(θ0 + rω)|x?〉.

We want r such that cos(θ0 + rω) = 0, so that when we measure the state, we will
measure |x?〉. Since

cos(θ0 + rω) = 0 if θ0 + rω = π

2 ,

choose
r =

⌊ π
2 − θ0

ω

⌉
.

Using the Taylor series

arcsin(x) = x+ x3

6 + · · ·+ (2n)!
22n(n!)2

x2n+1

2n+ 1 + · · · ,

it follow that

θ0 = arcsin 1√
N

= 1√
N

+O

(1
N3/2

)

and

ω = arcsin 2
√
N − 1
N

= 2
√
N − 1
N

+O

(1
N3/2

)

= 2√
N

+O

(1
N

)

= 2√
N

(
1 +O

(1√
N

))
.

3Here, bxe denotes the nearest integer to x.

116

Consequently,4

r =
⌊ π

2 − θ0

ω

⌉

=


π
2 −

1√
N

+O
(

1
N3/2

)
2√
N

(
1 +O

(
1√
N

))


=


π
2
√
N − 1 +O

(
1√
N

)
2
(

1 +O
(

1√
N

))


=
π√N

4 − 1
2 +O

(1√
N

)
Therefore, with r =

⌊
π
4
√
N
⌉
,5

Pr [measure Gr|Φ〉 in state |x?〉] = sin2(θ0 + rω)

= sin2
 1√

N︸ ︷︷ ︸
θ0

+
(π

4
√
N
)

︸ ︷︷ ︸
r

2√
N︸ ︷︷ ︸
ω

+O

(1√
N

)
︸ ︷︷ ︸
other terms



= sin2
(
π

2 +O

(1√
N

))

= cos2
(
O

(1√
N

))

=
(

1 +O

(1
N

))2

= 1 +O

(1
N

)
.

�

Of course, here the probability must be at most one, so the O(1
N) term is

necessarily negative. Altogether, then, we have proven Theorem 13.1, as desired.

4Here, we use the fact that if |x| < 1, then 1
1+x = 1− x+ x2 − x3 + · · · .

5Here, we use the fact that sin
(
π
2 + x

)
= cosx and that cosx = 1 +O(x2).

117

13.5. Generalizations and Quantum Optimality*

In the discussion above, we assumed there was only one choice of x ∈ {0, 1}n such
that f(x) = 1 (namely, x = x?), but in fact Grover’s algorithm easily generalizes
to the case of many possible “correct” x. The proof of the following fact uses
essentially the same argument above, and it makes a good exercise to modify
Grover’s algorithm to prove this fact.

Fact 13.7. Let f : {0, 1}n → {0, 1} be such that for all x ∈ S ⊆ {0, 1}n, f(x) = 1,
and for all x ∈ {0, 1}n\S, f(x) = 1. If M = |S| < N = 2n and M is known, then
Grover’s algorithm can find x ∈ S with probability 1 − O(2−n) using O(

√
N/M)

queries to f .

Interestingly, if M = N/2, then Grover’s algorithm provides no speedup (do you
see why?). If M > N/2, then Grover’s algorithm performs worse than classical
search algorithms. In general, then, you should use a classical algorithm ifM ≥ N/2.

Of course, we might not know M from the start. In that case, there is an
algorithm called the quantum counting algorithm, which allows one to first find M ,
and then to find a correct solution x ∈ S.

Among the many generalizations of Grover, perhaps the most useful is known as
amplitude amplification. This was the basic idea in the proof, in which we separated
an equal superposition of all strings into those strings that are not what we want
to measure (e.g., all x ∈ {0, 1}n\{x?}) plus those strings that we want to measure
(e.g., x?). What Grover allowed us to do is amplify the amplitude on the x? string,
so that when we measure, we are more likely than not to see |x?〉. Indeed, this is
the germ of amplitude amplification, and you are encouraged to read more about it
if this stuff interests you.

Finally, it is natural to wonder if there is any quantum algorithm that could
outperform Grover in the unstructured search problem. It turns out, however, that
this is false.

Fact 13.8. Any quantum algorithm that solves the unstructured search problem
with probability at least 1/2 + δ, for any δ > 0, must make Ω(

√
N/M) queries to f .

In the context of the complexity class NP, this lower bound has important
consequences.

118

13.6. Grover and NP*

On the surface, it may seem like Grover’s algorithm could give quantum computers
an edge when it comes to NP-complete problems like k-SAT.6 Indeed, they do have
an edge, but unfortunately not a considerable one (thanks to the Grover lower
bound above).

Fact 13.9. Using Grover’s algorithm, a quantum computer can decide k-SAT with
probability 1−O(2−n) in time Θ(

√
2n).

Of course, this is still exponential in n, so Grover’s algorithm does not afford
quantum computers the ability to solve NP-complete problems, and hence it does
not follow from Grover’s algorithm alone that NP ⊆ BQP.

That said, there is an interesting, theoretical application of Grover to something
called the strong exponential time hypothesis (SETH). To understand this, let us
first say what the exponential time hypothesis (ETH) is.

Conjecture 13.10 (Exponential Time Hypothesis). For all k, there exists sk > 0
such that k-SAT cannot be solved in time less than 2skn on a deterministic classical
computer.

Even with Grover, we expect the ETH to hold, albeit with different choices of
sk (namely, s′k = sk/2, do you see why?). That said, there is a strong form of the
ETH that fails in a quantum world thanks to Grover.

Conjecture 13.11 (Strong Exponential Time Hypothesis). If the ETH is true,
then limk→∞ sk = 1.

Therefore, SETH basically says that not only is the ETH true, but, in essence,
that there are really only two options for each sk, either sk = 1 − Θ(1)/k or
sk = 1 − Θ(1)/ log k. Using Grover’s algorithm, however, it is possible (and
straightforward) to show that SETH is false in a quantum world.

Exercise 13.4. Argue that Grover’s algorithm violates SETH.

Still, SETH is a well-defined conjecture when restricting to classical computers,
and there is in fact a quantum SETH that says you can’t do better than what you
get when you use Grover’s algorithm. These are interesting complexity theoretic
ideas that could make captivating final projects if complexity theory is your thing.

6If you are unfamiliar with this problem, I recommend reading the relevant parts of Arora and
Barak’s textbook Computational Complexity: A Modern Approach.

119

Lecture 14
Simon’s Algorithm

Discussion 14.1. Discuss with your group what you took away from last time.

Last time, we saw Grover’s algorithm, which solves the unstructured search
problem quadratically faster than any classical algorithm. In this lecture, we will see
our second quantum algorithm that provably outperforms every classical algorithm.
In particular, we will study Simon’s algorithm, which affords an exponential speedup
over the best possible classical algorithm (in the query complexity paradigm).

14.1. An Aside about H

Next lecture, we will learn that the Hadamard transformation is “the quantum
Fourier transform (QFT) over the group Z2”. This is an incredibly important fact,
as the QFT is the transformation that underlies all the fast quantum algorithms
that we know. Hence, it is no surprise that H appears in Grover’s algorithm and,
as we shall shortly see, Simon’s algorithm as well. Before discussing any sort of
Fourier analysis, consider the following question (a generalization of which you will
prove on HW4).

Question 14.1. Is the following true? For all x ∈ {0, 1},

H|x〉 = 1√
2
(
|0〉+ (−1)x|1〉

)
.

Importantly, this generalizes in a nice way:

Fact 14.1 (HW4). For all x ∈ {0, 1}n,

H⊗n|x〉 = 1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉,

120

where

x · y :=
n−1∑
i=0

xiyi (mod 2)

= x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1.

Notice how this looks like an inner product (a.k.a. a dot product) on a vector
space. Indeed, this is the case, and the exact vector space is

Fn2 :=


b1



1
0
...
0
0


⊕ b2



0
1
...
0
0


⊕ · · · ⊕ bn−1



0
0
...
1
0


⊕ bn



0
0
...
0
1


: b1, b2, . . . , bn ∈ {0, 1}


,

where ⊕ is element-wise addition mod 2 (and multiplication is also done mod 2).

Exercise 14.1. Prove that |Fn2 | = 2n.

These facts will come in handy shortly.

14.2. Simon’s Problem

Below is Simon’s problem. We note that while this problem is quite artificial (as
it was designed to be a problem that a classical computer is bad at solving), it is
surprising just how quickly a quantum computer can solve it (as we will see in the
next section).

Simon’s Problem
Input: f : {0, 1}n → {0, 1}n for which there is s ∈ {0, 1}n\{0n}
such that for all x, y ∈ {0, 1}n, f(x) = f(y) iff y = x or y = x⊕s.
Output: s (the “secret string”) by querying f .

Fact 14.2 (HW4). Any probabilistic classical computer that finds s with probability
at least 1/2 requires Ω(2n/2) queries to f .1

1This is an example of a birthday bound. See HW4 for a justification of this terminology.

121

14.3. Simon’s Algorithm

We will now see that we can solve Simon’s problem on a quantum computer with
probability 1−2−O(n) using only polynomially many queries to f , thus demonstrating
our first quantum exponential speedup. The algorithm that does this is know as
Simon’s algorithm, after computer scientist Daniel Simon.

Simon’s Algorithm
1. Prepare 2n qubits in the state |0n〉|0n〉.
2. Apply H⊗n to the first n qubits.
3. Apply the oracle Of to all 2n qubits.
4. Measure the last n qubits.
5. Apply H⊗n to the first n qubits.
6. Measure the first n qubits.
7. Repeat steps 1 – 6 O(n) times, and then use Gaussian elimination to

find s.

As a circuit, the quantum part of Simon’s algorithm is simply:

n

n

|0n〉 H⊗n

Of
H⊗n

|0n〉

1 2 3 54

Altogether, in this lecture we will establish the following theorem.

Theorem 14.3. Using a quantum computer (namely, that specified by Simon’s
algorithm), it is possible to solve Simon’s problem with probability at least 1− 2−O(n)

using O(n) queries to f and polynomial time classical post-processing. This is
exponentially fewer queries than any probabilistic classical algorithm.2

2In complexity theory, Simon’s problem demonstrates what is known as an “oracle separation”
between BPP and BQP. In complexity lingo, we summarize this by saying that “Simon’s
problem exhibits an oracle relative to which BPP 6= BQP”.

122

14.4. Correctness of Simon’s Algorithm

Let us start with an elementary exercise.

Exercise 14.2. Let S :=
{
z ∈ {0, 1}n : z · s = 0

}
, where s 6= 0n. Prove |S| = 2n−1.

Claim 14.4.

• If z 6∈ S, then Simon’s algorithm outputs z with probability zero.

• If z ∈ S, then Simon’s algorithm outputs z with probability 1/|S| = 1/2n−1.

Proof. Let |ψi〉 be the state in Simon’s algorithm after step i. Then,

|ψ1〉 = |0n〉|0n〉

|ψ2〉 = 1√
2n

∑
x∈{0,1}n

|x〉|0n〉

|ψ3〉 = 1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉.

Measuring the last n qubits collapses the last n qubits into some state |f(y)〉. In
this case, the overall 2n qubit state collapses to (up to normalization)

|ψ4〉 =
∑

x∈{0,1}n
f(x)=f(y)

|x〉|f(y)〉.

Since, by the definition of f , f(x) = f(y) iff x = y or x = y⊕ s, this state is simply

|ψ4〉 = 1√
2
(
|y〉+ |y ⊕ s〉

)
|f(y)〉,

where we’ve inserted the correct normalization factor. Consequently, after applying
Hadamards and using the identity from before,

|ψ5〉 = 1√
2
(
H⊗n|y〉+H⊗n|y ⊕ s〉

)
|f(y)〉

= 1√
2

 1√
2n

∑
z∈{0,1}n

[
(−1)y·z + (−1)(y⊕s)·z

]
|z〉
 |f(y)〉

= 1√
2n+1

∑
z∈{0,1}n

(
(−1)y·z + (−1)(y⊕s)·z

)
|z〉|f(y)〉.

123

We now measure the first n qubit. The probability that we measure the first n
qubits to be in the state |z〉 is

Pr
[
measure |z〉

]
= 1

2n+1

∣∣∣(−1)y·z + (−1)(y⊕s)·z
∣∣∣2 .

But it is easy to convince yourself that

(−1)(y⊕s)·z = (−1)(y·z)⊕(s·z)

= (−1)y·z(−1)s·z.

Therefore,

Pr
[
measure |z〉

]
= 1

2n+1

∣∣∣(−1)y·z + (−1)(y⊕s)·z
∣∣∣2

= 1
2n+1 |(−1)y·z + (−1)y·z(−1)s·z|2

= 1
2n+1 |1 + (−1)s·z|2

=
0 if s · z = 1

1
2n−1 if s · z = 0.

Therefore, when we run Simon’s algorithm and we measure the first n qubits, we
necessarily obtain z ∈ {0, 1}n such that s · z = 0, i.e., z ∈ S. Moreover, we obtain
any particular z ∈ {0, 1}n such that s · z = 0 with equal probability 1/2n−1. �

Claim 14.5. The probability that uniformly random z1, z2, . . . , zm ∼ S satisfy
zi · zj = 0 for all i, j ∈ {1, 2, . . . ,m} is at least 0.288 = O(1).

Proof. Think of each zi as a vector (zi1, zi2, . . . , zin)T ∈ Fn2 , zij ∈ {0, 1}, and suppose
k < m vectors z1, z2, . . . , zk are linearly independent (i.e., that zi · zj = 0 for all
distinct i, j ∈ {1, 2, . . . , k}). Then, these vectors span the subspace Fk2 ⊆ Fn2 , which
consists of all vectors of the form

b1z1 ⊕ b2z2 ⊕ · · · ⊕ bkzk, bi ∈ {0, 1}.

Now draw zk+1 ∼ S uniformly, and let us calculate the probability that it is
linearly independent from z1, z2, . . . , zk. Evidently, zk+1 is linearly independent of

124

z1, z2, . . . , zk if and only if it lies outside of Fk2. This has probability

Pr
[
zk+1 6∈ Fk2

]
= 1− Pr

[
zk+1 ∈ Fk2

]
= 1− |F

k
2|
|Fn2 |

= 1− 2k
2n

= 1− 1
2n−k .

Therefore, the probability of sequentially drawing m different zi ∼ S such that
zi · zj = 0 for all distinct i, j ∈ {1, 2, . . . ,m} is3

m−1∏
k=0

Pr
[
zk+1 6∈ Fk2

]
=

m−1∏
k=0

(
1− 1

2n−k

)

=
(

1− 1
2n

)(
1− 1

2n−1

)
· · ·

(
1− 1

2n−m+1

)

≥
∞∏
`=1

(
1− 1

2`

)
≈ 0.288
= O(1).

�

Claim 14.6. If Simon’s algorithm is run O(n) times, then s can be found with
probability at least 1− 2−O(n) by using a deterministic Turing machine that halts in
time O(n3).4

Proof. Running Simon’s algorithm m = n times (so that f is queried n times) yields
n n-bit strings z1, z2, . . . , zm ∈ {0, 1}n such that

z1 · s = 0
z2 · s = 0

...

zn · s = 0.
3The value for the infinite product follows from evaluating the rth partial product and then
taking the limit r →∞.

4In complexity lingo, we say that we can solve Simon’s problem using “polynomial time classical
post-processing.”

125

In other words, writing zi = (zi1, zi2, . . . , zin) and s = (s1, s2, . . . , sn), this system
of equations becomes the matrix equation


z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...
zn1 zn2 · · · znn




s1
s2
...
sn

 = 0,

where implicitly all operations are done mod 2. By the previous claim, the prob-
ability that the zi vectors are mutually linearly independent (i.e., that zi · zj = 0
for all distinct i, j ∈ {1, 2, . . . , n}) is O(1). Therefore, with constant probability,
this system of equations is determined, and so we can use Gaussian elimination to
solve it. By the following fact, we can solve this system efficiently on a classical
computer.
Fact 14.7. Using Gaussian elimination, one can find s in the previous matrix
equation in O(n3) time on a deterministic Turing machine.

Note that if after running Simon’s algorithm n times, we do not obtain n
linearly independent strings z1, . . . , zn (which happens with probability at most
1− 0.288 ≈ 0.712), then simply run Simon’s algorithm n times again to obtain n
new n-bit strings z′1, z′2, . . . , z′n. As before, the probability that these are all mutually
linearly independent is at least 0.288, and the probability that they are not is again
at most 0.712. However, the probability that in the first and the second run we do
not obtain n mutually linearly independent strings is at most 0.7122 ≈ 0.507. And
after k runs, the probability that we do not obtain n mutually linearly strings is at
most 0.712k. Thus, after O(n) runs, the probability that Simon’s algorithm will
return a set of n mutually linearly independent strings is at least

1− 0.712O(n) = 1− (1− 0.288)O(n) ≥ 1− e−0.288O(n) = 1− 2−O(n), 5

as desired. �

Putting all of this together, we have proven Theorem 14.3. We underscore that
the essential ingredient in Simon’s algorithm (and hence in proving Theorem 14.3)
is the Hadamard transformation. In later lectures, we will see that the essential
reason for other quantum speedups is also due to a Hadamard-like transformation,
which is known as the quantum Fourier transform (QFT). In the next lecture, we
will formally define the QFT.

5Here we are using the fact that for all x ∈ R, 1− x ≤ e−x.

126

Lecture 15
The Quantum Fourier Transform

Discussion 15.1. Discuss with your group what you took away from last time.

Last time, we studied Simon’s algorithm, which afforded an exponential speedup
over the best possible classical algorithm (in the query complexity paradigm). Recall
that Simon’s algorithm used the Hadamard transformation. In this lecture, we will
introduce what is a unifying ingredient of almost every fast quantum algorithm
we know: the quantum Fourier transform. Here, we will not introduce any new
algorithms, but we will instead study some basic properties of this transformation.
In later lectures, we will use this operation again and again.

15.1. The Quantum Fourier Transform over ZN

Definition 15.1.

• For all N ≥ 1, ZN (sometimes denoted Z/NZ) is the additive group of integers
modulo N , i.e., ZN := ({0, 1, 2, 3, . . . , N − 1},+ mod N).

• For all n, ZnN is the n-fold direct product group

ZnN := ZN × ZN × · · · × ZN︸ ︷︷ ︸
n times

,

where addition is done element-wise mod N .

Example 15.1.

• Z2 = ({0, 1},⊕), where ⊕ is addition mod 2 (i.e., XOR).

• Zn2 = ({0, 1}n,⊕), where, in this context, ⊕ is bit-wise addition mod 2 (i.e.,
bit-wise XOR).1

1Note that Zn2 is different from Fn2 because Zn2 is not a vector space.

127

We now define the quantum Fourier transform (QFT) over ZN and over ZnN .2

Definition 15.2. Let {|0〉, |1〉, |2〉, . . . , |N − 1〉} denote the computational basis of
CN , where for all ` ∈ ZN ,

|`〉 :=



0
...
0
1
0
...
0


← `th index.

Moreover, let ωN := e2πi/N be the Nth root of unity.

• The quantum Fourier transform (QFT) over ZN (or just the QFT if the group
is contextually clear) is the matrix3

FZN := 1√
N

∑
k,`∈ZN

ωk`N |k〉〈`|

= 1√
N



1 1 1 1 · · · 1
1 ωN ω2

N ω3
N · · · ωN−1

N

1 ω2
N ω4

N ω6
N · · · ω

2(N−1)
N

...
...

...
...

. . .
...

1 ωN−1
N ω

2(N−1)
N ω

3(N−1)
N · · · ω

(N−1)(N−1)
N


.

• The QFT over ZnN is the n-fold tensor product of FZN :

FZnN := FZN ⊗FZN ⊗ · · · ⊗ FZN︸ ︷︷ ︸
n times

.

If you are familiar with the discrete Fourier transform (DFT), then the QFT
might look familiar. Indeed, they are closely related.

2Interestingly, the QFT exists over any finite group G. In the case that G is abelian, the QFT
exhibits particularly nice properties that enable it to solve the so-called abelian hidden subgroup
problem, which generalizes Simon’s algorithm and Shor’s algorithm. Exploring this would
make a great final project if you are mathematically inclined.

3Incidentally, FZN
is an example of a Vandermonde matrix, which is the general type of matrix

that exhibits the structure you see in FZN
.

128

Fact 15.1. Let

|ψ〉 =


ψ0
ψ1
...

ψN−1

 ∈ CN ,

where we are expressing the vector in the computational basis. Then,

FZN |ψ〉 = |ψ̃〉 :=


ψ̃0
ψ̃1
...

ψ̃N−1

 ∈ CN ,

where for all k ∈ {0, 1, . . . , N − 1},

ψ̃k := 1√
N

N−1∑
`=0

ωk`N ψ`.

Therefore, up to normalization, FZN implements the inverse DFT of the sequence
ψ0, ψ1, . . . , ψN−1.

Note, however, that the QFT encodes the inverse DFT numbers ψ̃k in the
amplitudes of the quantum state. Thus, the QFT does not actually compute the
DFT, because we cannot directly access quantum amplitudes.

To build some intuition for FZN and FZnN , consider the case when N = 2.
Exercise 15.1.

• Prove that for all x ∈ {0, 1} = Z2,

FZ2|x〉 = 1√
2
(
|0〉+ (−1)x|1〉

)
.

• What transformation is FZ2?

By a result on HW 4, you’ve just proved the following incredibly useful fact:
Fact 15.2 (HW4). For all x ∈ {0, 1}n,

FZn2 |x〉 = 1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉,

where
x · y :=

n−1∑
i=0

xiyi (mod 2).

129

In consequence, we learn that the Deutsch-Jozsa algorithm, Grover’s algorithm,
and Simon’s algorithm all used the QFT over Zn2 as a key subroutine. Interestingly,
we will see in a few lectures that many other important quantum algorithms employ
the QFT over the more general ZN as a key subroutine.

15.2. Properties of FZN

Where we’re going, then, is to use the QFT as a gate in some larger quantum circuit.
Of course, to do this—to implement FZN on a quantum computer—presupposes
that FZN is a unitary transformation. Thankfully, this turns out to be true.

Fact 15.3 (HW5). For all N ≥ 1, FZN ∈ U(N).

In consequence, FZN is a valid quantum operation, so we can implement it on
a quantum computer. In the next section, we will see that we can do this quite
efficiently. Before this, however, let’s build a little intuition for why the QFT is so
useful.

Definition 15.3.

• A function f : Z→ Z is r-periodic iff for all k ∈ Z,

f(k) = f(k + r).

• A state |φ〉 ∈ CN is r-periodic with shift s iff in the computational basis

|φ〉 =
√
r

N

N/r−1∑
k=0
|s+ kr〉.

Example 15.2. Let f : Z→ Z be 2-periodic and such that f(0) 6= f(1). Then, the
state |φ〉 in the output of the circuit below is 2-periodic with a random shift s ∈ Z2.

2

2

|02〉 H⊗2

Of
|φ〉

|02〉

1 2 3 4

130

To see this, let |ψi〉 denote the state at step i in the circuit. Then,

|ψ1〉 = |02〉|02〉

|ψ2〉 =
 1√

22

∑
k∈Z4

|k〉
⊗ |02〉

|ψ3〉 = 1
2
∑
k∈Z4

|k〉|f(k)〉

= 1
2
(
|0〉|f(0)〉+ |1〉|f(1)〉+ |2〉|f(2)〉+ |3〉|f(3)〉

)
= 1

2
(
|0〉|f(0)〉+ |1〉|f(1)〉+ |2〉|f(0)〉+ |3〉|f(1)〉

)
= 1

2
[(
|0〉+ |2〉

)
|f(0)〉+

(
|1〉+ |3〉

)
|f(1)〉

]
,

where the last two lines follow from the 2-periodicity of f . Measuring the second
register of |ψ3〉 collapses the register to |f(s)〉 for some random shift s ∈ Z2, and the
first register collapses to all states |`〉 that are consistent with the second register
collapsing to |f(s)〉. The possibilities are:

|ψ4〉 =


1√
2 (|0〉+ |2〉) |f(0)〉 if s = 0

1√
2 (|1〉+ |3〉) |f(1)〉 if s = 1,

where we’ve updated the normalization factor. Therefore,

|φ〉 =


1√
2 (|0〉+ |2〉) if s = 0

1√
2 (|1〉+ |3〉) if s = 1.

Therefore, |φ〉 is a 2-periodic state with some shift s ∈ Z2.

This example is important as it hints at how we will use the QFT in future
algorithms (e.g., Shor’s algorithm). In particular, what the example illustrates is
that if we have an oracle for some function that is promised to be periodic, then
after applying the circuit above, we get out a state that is periodic with the same
period as the function. As the following fact shows, we can then use the QFT to
learn some information about the period.

Fact 15.4 (HW5). If |φ〉 ∈ CN is r-periodic with shift s, then

|φ̃〉 = FZN |φ〉

=
r−1∑
`=0

α`|`N/r〉,

131

where for all ` ∈ {0, 1, 2, . . . , r − 1}, |α`| = 1√
r
.4

Therefore, by measuring |φ̃〉, we learn information about the period r of |φ〉.
Hence, if we have a function that is r-periodic, and then we apply the circuit from
the example above, then applying the QFT to the state will recover information
about the period. This is the key fact of the QFT that we will exploit in later
lectures to factor integers, solve the discrete logarithm problem, and so forth. We
will explore this idea in detail when we talk about the quantum period finding
algorithm in a few lectures.

15.3. Implementing FZN on a Quantum Computer

Above, we saw that FZN is a unitary operator. Therefore, we can in principle
implement it on a quantum computer. Here, we will see how to do this, and we will
see that we can do this quite efficiently, i.e., with just a small number of quantum
gates. To prove this, we require some new notation for talking about the binary
representation of fractions.

Definition 15.4. Given n bits x0, x1, . . . , xn−1 ∈ {0, 1}, we write [0.x0x1 . . . xn−1]
for the following rational number (which is an example of a dyadic fraction),

[0.x0x1 . . . xn−1] :=
n−1∑
r=0

xr
2r+1

= x0

21 + x1

22 + · · ·+ xn−1

2n .

More generally, if j ∈ {0, 1, 2, . . . , n− 1}, we write

[0.xjxj+1 . . . xn−1] :=
n−1∑
r=j

xr
2r+1−j

= xj
21 + xj+1

22 + · · ·+ xn−1

2n−j .

Using this notation, we will now specialize to N = 2n and state a simple but
important fact about how FZ2n acts on the computational basis.

4In fact, it turns out that α` = e2πi`s/r/
√
r.

132

Fact 15.5 (HW5). For all x = x0x1 . . . xn−1 ∈ {0, 1}n,

FZ2n |x〉 =
0⊗

j=n−1

1√
2
(
|0〉+ e2πi[0.xjxj+1...xn−1]|1〉

)

= 1√
2
(
|0〉+ e2πi[0.xn−1]|1〉

)
⊗ · · · ⊗ 1√

2
(
|0〉+ e2πi[0.x0x1...xn−1]|1〉

)
.

Consequently, FZN does not entangle computational basis states. Moreover, as
you will explore on the homework, this fact allows one to contrive a circuit that
implements FZ2n . For this, we need the following T -like gate, which is easily seen
to be unitary:

Rk :=
1 0

0 e2πi/2k

 .
Fact 15.6 (HW5). The following circuit exactly implements FZ2n :

· · · · · · · · · · · ·

· · · · · · · · · · · ·

. . .
. . .

. . .
. . .

· · · · · · · · · · · ·

· · · · · · · · · · · ·

H R2 Rn−1 Rn

H Rn−2 Rn−1

H R2

H

Importantly, this is also an efficient implementation of FZ2n .5

Exercise 15.2. Prove that the number of gates in this circuit is

n(n+ 1)
2 +

⌊n
2

⌋
= O(n2).

Next lecture, we will use this fact to find the eigenvalues of a given unitary operator
rather efficiently (at least in certain cases). After that, we will demonstrate how to
efficiently find the period of any periodic function f : Z→ Z, which, in turn, will
allow us to efficiently factor integers (after we recast the factoring problem using
some cool number theory).

5Note that many of the Rk rotations in the above circuit have exponentially small entries (of
order 2−k). Thus, for large k, the gate is approximately the identity gate. One can exploit
this fact to get an even more efficient implementation of the QFT. Indeed, this is precisely
the idea behind the approximate QFT : ignore all Rk gates for k greater than some threshold.
Interestingly, the AQFT reduces the size of the QFT to O(n logn).

133

Lecture 16
The Quantum Phase Estimation Algorithm

Discussion 16.1. Discuss with your group what you took away from last time.

Last time, we discussed the quantum Fourier transform (QFT) over the group
ZN . We saw that this transformation, denoted FZN , is a unitary, N ×N matrix
that allows us to deduce period information from periodic states. We also saw that
the QFT over Z2 is the Hadamard transformation, which is a critical element in
both Grover’s algorithm and Simon’s algorithm. In this lecture, we will use the
QFT to solve a problem known as the phase estimation problem. The quantum
algorithm that does this is called the quantum phase estimation (QPE) algorithm,
and, like the QFT, it is an important subroutine in many quantum algorithms.

16.1. The Phase Estimation Problem

The phase estimation problem turns out to be a key problem to be able to solve
efficiently on a quantum computer. It is as follows.

The Phase Estimation Problem
Input: n ∈ N, an oracle that implements

Λn(U) :=
∑

k∈Z2n

|k〉〈k| ⊗ Uk

for some U ∈ U(2m), and |σ〉 ∈ C2m such that U |σ〉 = e2πiθ|σ〉.1

Output: The first n bits in the binary expansion of θ ∈ [0, 1).

On the surface, this problem is a bit artificial (after all, the oracle Λn(U) is rather
specific!). Nevertheless, as we will see next lecture, this problem is related to period
finding on a quantum computer, which itself is related to the problems of finding
primes factors, finding discrete logarithms, and finding hidden subgroups.

1Recall, the eigenvalue of any unitary is eiφ for some φ ∈ [0, 2π), i.e., it is e2πiθ for some θ ∈ [0, 1).

134

16.2. The Quantum Phase Estimation Algorithm

We will now see that we can solve the phase estimation problem on a quantum
computer with high probability using the quantum phase estimation algorithm. In
certain cases, this algorithm is efficient.

The Quantum Phase Estimation (QPE) Algorithm
1. Prepare n qubits in the state |0n〉. Incorporate this with the inputted,
m-qubit state |σ〉, so that the initial state of the computer is |0n〉|σ〉.

2. Apply H⊗n to the first n qubits.
3. Apply the oracle Λn(U).
4. Apply the inverse QFT, F−1

Z2n
= F †Z2n

, to the first n qubits.
5. Measure the first n qubits.

As a circuit, the QPE algorithm is simply

n

m

|0n〉 H⊗n

Λn(U)
F †Z2n

|σ〉

In fact, there is a more workable version of this circuit, which relies on an alternate
representation of the Λn(U) operator.

Claim 16.1. For all n and all U ∈ U(2m),

Λn(U) =

· · ·

... . .
. ...

· · ·
· · ·

· · ·m

n

U20
U21

U2n−1

135

Proof. For all |σ〉 ∈ C2m and all ` ∈ Z2n with binary expansion ` = x02n−1 +
x12n−2 + · · ·+ xn−120, it holds that

Λn(U)|`〉|σ〉 = |`〉 ⊗ U `|σ〉
= |x0x1 . . . xn−1〉 ⊗ Ux02n−1+x12n−2+···+xn−120

|σ〉
= |x0x1 . . . xn−1〉 ⊗ Ux02n−1

Ux12n−2
· · ·Uxn−120

|σ〉,

from which the above circuit identity follows. �

As a circuit, then, the phase estimation algorithm is simply:

Λn(U)

· · ·

... . .
. ...

· · ·

· · ·

· · ·m

|0n〉

H

F †Z2n

H

H

|σ〉 U20
U21

U2n−1

1 2 3 4

In this lecture, we will prove the following theorem.

Theorem 16.2. Let Tn(U) be the minimum number of 1- and 2-qubit gates needed
to exactly implement Λn(U). Then, there exists a quantum computer (namely, that
specified by the QPE algorithm) of size O(Tn(U) + n + n2) that outputs an n-bit
approximation of θ (and hence solves the phase estimation problem) with probability
at least 1− π2

12 ≈ 0.178.2 Therefore, if Tn(U) is a polynomial, then by the probability
amplification theorem, there exists an efficient quantum computer that computes an
n-bit approximation of θ with probability at least 1− 2−O(poly(n)).

To prove this theorem, we will prove several intermediate claims. Next lecture,
we will see that, in certain cases, Λn(U) relates to the canonical oracle function Of

2Here, the n in the big oh is from the n Hadamards, and the n2 is from the implementation of
F †Z2n

.

136

for some particular choice of function f . This will imply that if we can implement
Of efficiently, then we can simulate the effect of Λn(U) efficiently as well (which
means that Tn(U) is a polynomial in n). For now, however, let us focus on why the
QPE algorithm works.

Claim 16.3. Let |ψi〉 be the state of the QPE algorithm after step i. Then,

|ψ4〉 =
 1

2n
∑

k,`∈Z2n

e2πik(θ−`2−n)|`〉
⊗ |σ〉.

Proof. We find:

|ψ1〉 = |0n〉|σ〉

|ψ2〉 =
 1√

2n
∑
j∈Z2n

|j〉
 |σ〉.

By definition, the controlled operations satisfy

|ψ3〉 =
 ∑
k∈Z2n

|k〉〈k| ⊗ Uk

 |ψ2〉

= 1√
2n

∑
k∈Z2n

|k〉 ⊗ (Uk|σ〉)

= 1√
2n

∑
k∈Z2n

e2πikθ|k〉 ⊗ |σ〉.

We now apply F †Z2n
to the first n qubits to get

|ψ4〉 =
(
F †Z2n

⊗ I2m
)
|ψ3〉

=
 1√

2n
∑

k∈Z2n

e2πikθF †Z2n
|k〉
⊗ |σ〉.

By the definition of the inverse QFT,

F †Z2n
|k〉 = 1√

2n
∑
`∈Z2n

(ω`k2n)∗|`〉

= 1√
2n

∑
`∈Z2n

e−2πi`k/2n|`〉,

137

so it holds that

|ψ4〉 =
 1

2n
∑

k,`∈Z2n

e2πikθ−2πik`/2n|`〉
⊗ |σ〉

=
 1

2n
∑

k,`∈Z2n

e2πik(θ−`2−n)|`〉
⊗ |σ〉.

�

We will now study what happens when we measure the first n qubits of this state
by considering two different cases: the so-called “exact” and “non-exact” cases. In
both of these cases, the key to the correctness proof is the geometric sum formula.

Exercise 16.1. Prove that for all complex numbers a, r and all positive integers N ,

a+ ar + ar2 + · · ·+ arN−1 =
aN if r = 1
a · 1−rN

1−r otherwise.

Here, r is called the common ratio.

16.3. Correctness of QPE: The Exact Case

In the exact case, we assume that θ has a binary expansion with at most n bits.
This implies that 2nθ ∈ Z2n. It will turn out that in this case, QPE solves the phase
estimation problem exactly.

Claim 16.4. If 2nθ ∈ Z2n, then

|ψ4〉 = |2nθ〉|σ〉.

Thus, in this case, if we measure the first n qubits of |ψ4〉, then with probability one
we obtain θ exactly, and hence we solve the phase estimation problem exactly.

Proof. Since 2nθ ∈ Z2n, the representation of |ψ4〉 in the previous claim can be split

138

into a sum over all ` 6= 2nθ plus ` = 2nθ:

|ψ4〉 =
 1

2n
∑

k,`∈Z2n

e2πik(θ−`2−n)|`〉
⊗ |σ〉

=

 1
2n

∑
k,`∈Z2n
6̀=2nθ

e2πik(θ−`2−n)|`〉

⊗ |σ〉+ 1
2n

∑
k∈Z2n

|2nθ〉 ⊗ |σ〉

=

 1
2n

∑
k,`∈Z2n
6̀=2nθ

e2πik(2nθ−`)2−n|`〉

⊗ |σ〉+ 1
2n

∑
k∈Z2n

|2nθ〉 ⊗ |σ〉.

The first sum involves a geometric sum over k with common ratio e2πi(2nθ−`)2−n.
Since 2nθ ∈ Z2n, if ` ∈ Z2n\{2nθ}, then this ratio is never one. This implies that
for all ` ∈ Z2n\{2nθ},

∑
k∈Z2n

e2πki(2nθ−`)2−n = 1− e2πi(2nθ−`)

1− e2πi(ˆ̀−`)2−n
= 0,

so

|ψ4〉 = 1
2n

∑
k∈Z2n

|2nθ〉 ⊗ |σ〉

= |2nθ〉|σ〉,

as desired. �

16.4. Correctness of QPE: The Non-Exact Case*

In the non-exact case, we assume that θ has a binary expansion with more than
n bits. This includes the case when θ is irrational. The analysis here is more
complicated than the exact case, but the result is basically the same: QPE outputs
an n-bit estimate of θ with high probability. To prove this, we begin by studying
what the amplitudes of |ψ4〉 look like in the non-exact case.

Claim 16.5. Suppose 2nθ 6∈ Z2n, and let α` be the amplitude of |`〉|σ〉 in |ψ4〉, i.e.,

α` := 1
2n

∑
k∈Z2n

e2πik(θ−`2−n).

139

Then,

α` = 1
2n ·

eπi(2
nθ−`)

eπi(θ−`2−n) ·
sin[π(2nθ − `)]

sin[π(θ − `2−n)] .

Proof. For all ` ∈ Z2n, α` is 2−n times a geometric sum over k with common ratio
e2πi(θ−`2−n). This ratio is never one because 2nθ 6∈ Z2n. Therefore,

α` = 1
2n ·

1− e2πi(θ2n−`)

1− e2πi(θ−`2−n)

= 1
2n ·

eπi(θ2
n−`)

eπi(θ−`2−n) ·
e−πi(θ2

n−`) − eπi(θ2n−`)

e−πi(θ−`2−n) − eπi(θ−`2−n)

= 1
2n ·

eπi(θ2
n−`)

eπi(θ−`2−n) ·
eπi(θ2

n−`) − e−πi(θ2n−`)

eπi(θ−`2−n) − e−πi(θ−`2−n) .

By

sin x = eix − e−ix

2i ,

it follows that
α` = 1

2n ·
eπi(2

nθ−`)

eπi(θ−`2−n) ·
sin[π(2nθ − `)]

sin[π(θ − `2−n)] ,

as desired. �

Claim 16.6. Let b = b2nθe ∈ Z2n be the nearest integer to 2nθ. Then,

Pr [measure |b〉] ≥ 1− π2

12 ≈ 0.178.

Proof. By Claim 16.5,

Pr [measure |b〉] = |αb|2

= 1
22n ·

sin2[π(2nθ − b)]
sin2[π(θ − b2−n)] .

Using the Taylor expansion of sin x, it is easy to reason that for all x ∈ R,

x2 − 1
3x

4 ≤ sin2 x ≤ x2.

140

Therefore,

Pr [measure |b〉] ≥ 1
22n ·

π2(2nθ − b)2 − 1
3π

4(2nθ − b)4

π2(θ − b2−n)2

= π2(2nθ − b)2 − 1
3π

4(2nθ − b)4

π2(2nθ − b)2

= 1− π2(2nθ − b)2

3 .

Since b is the nearest integer to 2nθ, there exists 0 ≤ ε ≤ 1
2 such that |b− 2nθ| ≤ ε.

Therefore, |b− 2nθ|2 = (b− 2nθ)2 ≤ ε2 ≤ 1
4 . Consequently,

Pr [measure |b〉] ≥ 1− π2(2nθ − b)2

3

≥ 1− π2 1
4

3

= 1− π2

12 ,

as desired. �

Altogether, we have proven Theorem 16.2. Next time, we will see that QPE
allows us find the period of a general type of periodic function.

141

Lecture 17
The Quantum Period Finding Algorithm

Discussion 17.1. Discuss with your group what you took away from last time.

Last time, we discussed the quantum phase estimation (QPE) algorithm, which
solves the phase estimation problem. In this lecture, we will study the quantum
period finding (QPF) algorithm, which allows us to find the period of a general
periodic function defined on the integers. Interestingly, the quantum part of QPF
is really just QPE in disguise, which, if time permits, we will discuss at the end
of the lecture. Next lecture, we will use period finding (which again is really just
QPE, which in turn heavily relies on the quantum Fourier transform) to efficiently
factor integers.

17.1. The Period Finding Problem

The period finding problem is a natural problem to due with univariate periodic
functions. It is defined as follows.

The Period Finding Problem
Input: M ∈ N and f : Z→ Z as an oracle such that:
• f is r-periodic for some r > 0,
• r ≤M (i.e., M upper-bounds the period r),
• f(x) exists for all x ∈ Z (i.e., f is total),
• f(0), f(1), . . . , f(r − 1) are all distinct.

Output: the period r by querying f .

Given the constraints in the period finding problem, the domain of f is Zr and
the codomain of f is a subset of Z that is isomorphic to Zr. Technically, then, we
may regard f as a map from Zr to Zr. However, because we only know M and we

142

do not know r, in our ignorance we can only regard f as a map from ZM to ZM ,
where within ZM we are guaranteed to “see” the period r, because we know M > r.
In fact, as we shall shortly see, our approximation of f will be even coarser, as we
will instead regard f as a map from ZN to ZN , where N is a power of two such
that N ≥M2. This coarser approximation will be necessary to recover the period
r in the classical post-processing step of the quantum period finding algorithm.

Question 17.1. Classically, how many queries to f suffice to determine r?

In fact, in general, one requires Ω(M) = Ω(r) queries classically.

17.2. The Quantum Period Finding Algorithm

We will now see that we can solve the period finding problem on a quantum
computer with high probability using the QPF algorithm. In a later section, we
will see that this algorithm is just QPE in disguise for a particular choice of unitary
U . It follows that if we can do QPF efficiently, then we can do QPE efficiently for
that choice of U , and vice versa.

The Quantum Period Finding (QPF) Algorithm
1. Prepare 2n qubits in the state |0n〉|0n〉, where N = 2n ≥M2.1

2. Apply H⊗n to the first n qubits.
3. Apply Of .
4. Measure the last n qubits.
5. Apply FZN to the first n qubits.
6. Measure the first n qubits.
7. Apply the continued fractions algorithm to the measurement result.

As a circuit, then, the quantum part of the period finding algorithm is simply:

1In fact, only the first register requires this many qubits. The second register merely needs
blog(M − 1)c+ 1 qubits, which allows you to save space. The reason is because f can only
ever be as large as r, which we know is strictly less than M . We will not proceed with this
assumption here, but it is a minimal modification that you can make and the proofs we give
in this lecture are ultimately unaffected by that change.

143

n

n

|0n〉 H⊗n

Of
FZN

|0n〉

1 2 3 4 5

Notice, this circuit is essentially the same as the circuit in Simon’s algorithm,
except here we are applying the QFT over ZN , whereas in Simon’s algorithm we
applied the QFT over Zn2 (namely, H⊗n).

In this lecture, we will establish the following theorem.

Theorem 17.1. There exists an efficient quantum computer (namely, that specified
by the QPF algorithm) that outputs r (and hence solves the period finding problem)
with probability

Ω
(1

log log r

)
= Ω

(1
log log 2n

)
= Ω

(1
log n

)

using just one query to f . Thus, there exists an efficient quantum computer that
outputs r with probability at least 1−2−O(poly(n)) using O(poly(n) log n) = O(poly(n))
queries to f .

To prove this theorem, we will break the proof up into an “exact” case and a
“non-exact” case, similar to what we did for QPE.

17.3. Correctness of QPF: The Exact Case

In the exact case, we assume that r | N , so that there exists an integer t such that
t = N/r. It will turn out that in this case, QPF solves the period finding problem
exactly.

Fact 17.2 (HW5). Let |ψi〉 be the state of the QPF algorithm after step i. If r | N ,
then

|ψ5〉 =
 1√

r

∑
`∈Zr

e2πi`s/N |N`/r〉
⊗ |f(s)〉,

where s ∈ ZN . Thus, in this case, if we measure the first n qubits of |ψ5〉, then with
probability one we obtain an integer multiple of t = N/r.

As indicated, you will prove this on HW5. The proof involves carefully tracking
the state as it evolves through the QPF circuit above and then (crucially) applying

144

the assumption that r | N . Shortly, we will see how to recover the period r given
N , M , and an integer multiple of N/r. First, however, let us discuss what |ψ5〉
looks like in the non-exact case.

17.4. Correctness of QPF: The Non-Exact Case

In the non-exact case, we assume that r - N , so that r does not divide N . It will
turn out that in this case, QPF solves the period finding problem with a probability
that is bounded below by a constant. The analysis here is more complicated than
the exact case, but the essential idea is the same. Also, you may note the similarity
between this analysis and the analysis we gave for the non-exact case of QPE. This
is not a coincidence (see the final section in these notes).

Claim 17.3. If r - N , then

|ψ5〉 =
 1√

tN

∑
`∈ZN

eπi`(2s+rt)/N

eπir`/N
· sin[πrt`/N]

sin[πr`/N] |`〉
⊗ |f(s)〉,

where s ∈ ZN and

t =
b

N
r c+ 1 if s < N − rbNr c
bNr c otherwise.

Proof*. We find:

|ψ1〉 = |0n〉|0n〉

|ψ2〉 = 1√
N

∑
k∈ZN

|k〉|0n〉

|ψ3〉 = 1√
N

∑
k∈ZN

|k〉|f(k)〉.

Measuring the second register collapses it to some state |f(s)〉, which in turn
collapses the first register to an equal superposition of all states consistent with
the collapse of the second register, i.e., to all states |`〉 with f(`) = f(s). By the
r-periodicity of f , each |`〉 is a shift by s from some integer multiple of r, i.e., for
all `, ` = s+ kr, where k ∈ Zt for some positive integer t that we now describe.

• If s < N − rbN/rc, then the largest choice of k (i.e., t) is bN/rc+ 1.

• If, however, s ≥ N − rbN/rc, then the largest choice of k is bN/rc.

145

Both of these claims are evident from the following figure.

In summary, then,

t =
b

N
r c+ 1 if s < N − rbNr c
bNr c otherwise.

Consequently,
|ψ4〉 = 1√

t

∑
k∈Zt
|s+ kr〉|f(s)〉.

We recognize the first register as an r-periodic state with shift s. Therefore, applying
the QFT over ZN gives

|ψ5〉 =
 1√

tN

∑
k∈Zt

∑
`∈ZN

e2πi(s+kr)`/N |`〉
⊗ |f(s)〉

=
 1√

tN

∑
`∈ZN

e2πi`s/N ∑
k∈Zt

e2πikr`/N |`〉
⊗ |f(s)〉.

Here, the sum over k is a geometric sum with common ratio e2πir`/N . For all ` ∈ ZN ,
this ratio is never one because r - N and ` < N . Therefore, it holds that

∑
k∈Zt

e2πikr`/N = 1− e2πirt`/N

1− e2πir`/N

= eπirt`/N

eπir`/N
· e
−πirt`/N − eπirt`/N

e−πirt`/N − eπirt`/N

= eπirt`/N

eπir`/N
· e

πirt`/N − e−πirt`/N

eπirt`/N − e−πirt`/N
.

By

sin x = eix − e−ix

2i ,

146

it follows that ∑
k∈Zt

e2πikr`/N = eπirt`/N

eπir`/N
· sin[πrt`/N]

sin[πr`/N] .

Hence,

|ψ5〉 =
 1√

tN

∑
`∈ZN

eπi`(2s+rt)/N

eπir`/N
· sin[πrt`/N]

sin[πr`/N] |`〉
⊗ |f(s)〉,

as desired. �

Given this result, it is plain that if we measure |ψ5〉 in the computational basis,
then we expect the distribution of measurement outcomes to be strongly peaked
around those ` ∈ ZN that are close to integer multiples of N/r. Indeed, this is true.
Claim 17.4. For all j ∈ Zr, let bj := bjN/re. Then, for all j ∈ Zr,

Pr [measure |bj〉] ≥
1
r

(
1− π2

12 −
1

420

)
≈ 0.175

r
.

Proof*. By Claim 17.3,

Pr [measure |bj〉] = 1
tN
· sin2[πrtbj/N]

sin2[πrbj/N] .

Writing bj = bjN/re = jN/r + ε, where |ε| ≤ 1/2, gives

Pr [measure |bj〉] = 1
tN
· sin2[πrt(jN/r + ε)/N]

sin2[πr(jN/r + ε)/N]

= 1
tN
· sin2[πtj + πrtε/N]

sin2[πj + πrε/N]

= 1
tN
· sin2[πrtε/N]

sin2[πrε/N] ,

where in the last line we’ve used the fact that sin(πk + x) = sin(x) for all x ∈ R
and all k ∈ Z. Now, using the Taylor expansion of sin x, it is easy to reason that
for all x ∈ R,

x2 − 1
3x

4 ≤ sin2 x ≤ x2.

Therefore,

Pr [measure |bj〉] ≥
1
tN
·

(πrtε/N)2 − 1
3(πrtε/N)4

(πrε/N)2

= t2 − 1
3(πrε/N)2t4

tN
.

147

Since |ε| ≤ 1/2, ε2 ≤ 1/4, so

Pr [measure |bj〉] ≥
t2 − 1

12(πr/N)2t4

tN
.

Finally, since t = N/r + δ for some δ such that |δ| < 1, it holds that

Pr [measure |bj〉] ≥
(N/r + δ)2 − 1

12(πr/N)2(N/r + δ)4

(N/r + δ)N

≥
(N/r − 1)2 − 1

12(πr/N)2(N/r − 1)4

(N/r + 1)N

= (N/r − 1)2 − 1
12(πr/N)2(N/r − 1)4

N2/r[1 + r/N]

= (N/r − 1)2 − 1
12(πr/N)2(N/r − 1)4

N2/r

[
1−O

(r
N

)]
,

where we’ve used the Taylor expansion of 1
1+x to get the last line. It remains to

simplify this expression. Doing so, we find that

Pr [measure |bj〉] ≥
1
r

(
1− π2

12

)
−O

(1
N

)
.

Since, for sufficiently large N , O(1/N) < 1/420r, it holds that

Pr [measure |bj〉] ≥
1
r

(
1− π2

12 −
1

420

)
,

as desired. �

Corollary 17.5. Let bj be as before. Then,

Pr [measure |b0〉 or |b1〉 or . . . or |br−1〉] ≥ 1− π2

12 −
1

420 .

Proof. Since for all i 6= j, measuring |bi〉 and measuring |bj〉 are disjoint events
(meaning Pr[measure |bi〉 and |bj〉] = 0), it holds that

Pr [measure |b0〉 or |b1〉 or . . . or |br−1〉] =
∑
j∈Zr

Pr [measure |bj〉]

≥ r · 1
r

(
1− π2

12 −
1

420

)

= 1− π2

12 −
1

420 ,

where the second line follows from Claim 17.4. �

148

17.5. Extracting the Period: The Continued Fractions Algorithm

We have now seen that in both the exact and non-exact cases, for N sufficiently large,
upon measuring |ψ5〉 in the computational basis, we obtain an integer bj = bjN/re
for some positive integer j ≤ bN/rc+1 with a probability that is bounded below by a
constant. Thus, by repeating the quantum part of the QPF algorithm polynomially
many times, we are exponentially more likely than not to obtain such a bj. The
question, then, is given bj and N , how can we recover r? The answer is to exploit
certain properties of continued fractions.

Definition 17.1.

• Let a0, . . . , am ∈ Z with a1, . . . , am ≥ 1. The expression

φ = a0 + 1
a1 + 1

a2+ 1
. . .+ 1

am

is called the continued fraction expansion (abbreviated CFE) of the rational
number φ.2 We denote this more conveniently by φ = [a0; a1, . . . , am].

• For all k ≤ m, we call ck := [a0; a1, . . . , ak] the kth convergent of φ.

The following exercise underscores a basic fact about continued fractions that we
will not prove formally in this course.

Exercise 17.1. Argue that if the CFE of a number φ terminates, then φ is rational.

In fact, the converse is also true (albeit it is more difficult to prove): if φ is
rational, then it has a finite CFE. Thus, φ is rational if and only if it has a finite
CFE. Given this, there is a relatively simple and efficient algorithm that determines
the CFE of any rational number.

Fact 17.6 (The Continued Fractions Algorithm). There exists a deterministic
classical algorithm that, given a rational number φ = p

q as input, where p and q are
at most n-bit numbers, outputs the CFE of φ in O(n3) time.

2In fact, there are exactly two CFEs of any rational number φ (namely, [a0; a1, . . . , ak] and
[a0; a1, . . . , ak − 1, 1]), so calling one the CFE of φ is not exactly right, but it is close enough
to right that we need not worry about it.

149

Rather than prove this theorem (and describe the continued fractions algorithm
in generality), we will provide an example of the algorithm that demonstrates its
essence.

Example 17.1. Suppose we want to find the CFE of φ = 31
13 . The first step in the

continued fractions algorithm is to split 31/13 into its integer and fractional part:
31
13 = 2 + 5

13 .

Next, simply invert the fractional part:
31
13 = 2 + 1

13
5
.

These two steps—split then invert—are then recursively applied to 13
5 , giving:

31
13 = 2 + 1

2 + 1
5
3

= 2 + 1
2 + 1

1+ 1
3
2

= 2 + 1
2 + 1

1+ 1
1+ 1

2

At this point, the algorithm halts, because the final expression is a valid continued
fraction, namely, [2; 2, 1, 1, 2]. Note that for more general rational φ, the algorithm is
guaranteed to halt because, by Exercise 17.1, every rational number has a finite CFE.
Also note that here we needed O(n) “split-then-invert” steps and O(n2) elementary
arithmetic operations, for a total deterministic time complexity of O(n3).

That is the continued fractions algorithm in a nutshell. But how does it help
in extracting the period r from a measurement of the state |ψ5〉? To understand
this requires the following technical fact, which is relevant in the study of rational
approximations of irrational numbers.3

Fact 17.7. Let φ > 0 be rational, let M > 1 be an integer, and let pk
qk

be the kth
convergent of φ. If j

r is a positive, irreducible rational such that r ≤M and∣∣∣∣∣φ− j

r

∣∣∣∣∣ ≤ 1
2M2 ,

3For a proof of this fact, there is a great walkthrough here.

150

https://sites.millersville.edu/bikenaga/number-theory/approximation-by-rationals/approximation-by-rationals.html

then j
r is a convergent in the CFE of φ. In particular, j

r = pi
qi
, where i is the largest

index such that qk ≥M for all k > i (i.e., qi is the largest denominator in the CFE
of φ whose value is less than M).

In the context of QPF, we get the following corollary.

Corollary 17.8. Let bj = bjN/re be as before, but with the additional assumption
that j

r is irreducible. Moreover, let

φ = bj
N

= bjN/re
N

,

and let pk
qk

be the kth convergent of φ. If r ≤ M and N ≥ M2, then j/r is a
convergent in the CFE of φ. In particular, j

r = pi
qi
, where i is the largest index such

that qk ≥M for all k > i. In this case, by using the continued fractions algorithm,
we can recover r in deterministic time O(log3N).

Proof. We can write bjN/re = jN/r + ε, where |ε| ≤ 1/2. Consequently,∣∣∣∣∣φ− j

r

∣∣∣∣∣ =
∣∣∣∣∣jr + ε

N
− j

r

∣∣∣∣∣
=
∣∣∣∣ εN

∣∣∣∣
≤ 1

2N
≤ 1

2M2 .

Thus, the result follows from Facts 17.6 and 17.7. �

Looking closely at this corollary’s statement, there is still one final caveat that
needs to be addressed: how can we guarantee that j/r is irreducible? Recall that
this means we require j and r to share no common factors, which is to say that
we require them to be coprime (a.k.a. relatively prime). A necessary and sufficient
condition for coprimality is that the greatest common divisor of j and r is one, i.e.,
that gcd(j, r) = 1. To better understand this requires the following definition.

Definition 17.2. For all n ∈ N, let

ϕ(n) := # of positive integers k < n such that gcd(k, n) = 1.

This function is called Euler’s totient function.

151

Exercise 17.2. Prove that for all primes p, ϕ(p) = p− 1.

Next lecture, we will see several important properties of the totient function. For
this lecture, the key fact we need is the following inequality.

Fact 17.9. As m→∞,4

min
n≤m

ϕ(n) log log n
n

> 0.

Therefore,
ϕ(n)
n

= Ω
(1

log log n

)
.

Combining this fact with the results from before, we can now conclude the proof
of Theorem 17.1.

Claim 17.10. Let bj be as before. The probability P that we measure |ψ5〉 to be in
state |bj〉 for any j ∈ Zr such that gcd(j, r) = 1, and hence the probability that on a
single run of QPF we recover the period r, is Ω

(
1

log log r

)
.

Proof. By the definition of conditional probability and the previous results, we have

P =
∑
j∈Zr

Pr [gcd(j, r) = 1 | measure |bj〉] · Pr [measure |bj〉]

≥
∑
j∈Zr

ϕ(r)
r
· 1
r

(
1− π2

12 −
1

420

)

= r · ϕ(r)
r
· 1
r

(
1− π2

12 −
1

420

)

= ϕ(r)
r

(
1− π2

12 −
1

420

)

= Ω
(1

log log r

)
,

as desired. �
4Technically, this minimum should be an infimum (i.e., the greatest lower bound), so that the
limit is the limit inferior, but we need not concern ourselves with that mathematical subtlety.
Interestingly, if you use the natural logarithm, then this limit inferior approaches eγ , where

γ := lim
n→∞

(
− logn+

n∑
k=1

1
n

)
≈ 0.577

is the Euler–Mascheroni constant.

152

We have therefore proven the main theorem, Theorem 17.1, which establishes
the correctness of the QPF algorithm in both the exact and non-exact cases. In
the next section, we discuss how QPF relates to QPE.

17.6. QPF is QPE in Disguise*

We have said many times that QPE is the essential algorithm that underlies many
important algorithms, such as Shor’s algorithm. In the same breath, we have also
said that QPF is the essential algorithm that underlies many important algorithms,
again like Shor’s. Here, we will show that QPE is really the deeper algorithm, as
QPF, while in many respects “cleaner”, is just QPE in disguise.
Definition 17.3. Let f : Z → Z be a total, r-periodic function for which
f(0), f(1), . . . , f(r − 1) are all distinct. The shift operator of f , denoted by Sf , is
the unitary matrix Sf such that for all x ∈ Zr,

Sf |f(x)〉 = |f(x+ 1)〉,
where addition is implicitly modulo r.

The unitarity of Sf is not difficult to establish, and it relies on the fact that
f(0), f(1), . . . , f(r − 1) are all distinct values (so that |f(0)〉, . . . , |f(r − 1)〉 is a
basis of Cr). Indeed, one can write Sf = ∑

x∈Zr |f(x + 1)〉〈f(x)|, which makes it
easy to see that S−1

f = S†f .
We now state an important fact about the shift operator.

Claim 17.11. For all ` ∈ Zr, define

|f̃(`)〉 := 1√
r

∑
x∈Zr

e−2πi`x/r|f(x)〉.

Then, |f̃(`)〉 is an eigenvector of Sf with eigenvalue e2πi`/r.
Proof. By the definition of Sf ,

Sf |f̃(`)〉 = 1√
r

∑
x∈Zr

e−2πi`x/r|f(x+ 1)〉

= 1√
r

∑
x∈Zr

e2πi`/r−2πi`(x+1)/r|f(x+ 1)〉

= e2πi`/r 1√
r

∑
x∈Zr

e−2πi`(x+1)/r|f(x+ 1)〉

= e2πi`/r|f̃(`)〉,

153

as desired. �

Importantly, using the geometric sum formula, it is also straightforward to
establish the following fact, which we will leave as an exercise to the reader.

Fact 17.12. For all x ∈ Zr,

|f(x)〉 = 1√
r

∑
`∈Zr

e2πi`x/r|f̃(`)〉.

Now recall the state |ψ3〉 in the QPF algorithm,

|ψ3〉 = 1√
N

∑
k∈ZN

|k〉|f(k)〉.

By the previous fact, we can write this as follows

|ψ3〉 = 1√
rN

∑
k∈ZN

∑
`∈Zr

e2πi`k/r|k〉|f̃(`)〉.

Note, however, that this is exactly the state you get in QPE after applying Λn(Sf)
to the state 1√

r

∑
`∈Zr H

⊗n|0n〉⊗ |f̃(`)〉, where the eigenvalue phase is θ = `/r. Thus,
continuing with the QPE algorithm, one will recover a good approximation to Nθ,
which in turn gives a good approximation to an integer multiple of N/r. Using
continued fractions, one can then find r. Consequently, we see that QPE with Sf is
period finding, and in this way underlies the QPF algorithm.

Incidentally, we note that the effect of the oracle Of in QPF can be simulated
by Λn(Sf). To see this, fix a ∈ ZN and let s be such that f(s) = a. Then, for all
k ∈ ZN with binary expansion k = ∑dlog(N−1)e

i=0 xi2n−i−1,

Λn(Sf)|k〉|a〉 = Λn(Sf)|k〉|f(s)〉

= |k〉Sx02n−1

f Sx12n−2

f · · · Sxn−120

f |f(s)〉

= |k〉Sx02n−1

f Sx12n−2

f · · · Sxn−221

f |f(xn−120 + s)〉

= |k〉Sx02n−1

f Sx12n−2

f · · · Sxn−322

f |f(xn−221 + xn−120 + s)〉
...

= |k〉|f(x02n−1 + x12n−2 + · · ·+ xn−120 + s)〉
= |k〉|f(k + s)〉.

154

Therefore, when we measure the second register, we will obtain some state |f(s′)〉,
and the first register will collapse into a superposition of states that are consistent
with the collapse of the second register. From here, the QPF algorithm proceeds
in the same way, in both the exact and non-exact cases. What this shows is that
the controlled operation Λn(Sf) is just as good in QPF as the canonical quantum
oracle Of .

17.7. A Number Theoretic Digression*

While this section is not needed for anything we will discuss in this class, there
is an interesting, somewhat relevant number theoretic fact that pertains to our
studying the probability that some j ∈ Zr is coprime to r. Instead of this question,
you might ask, what is the probability that two numbers, k1 and k2, that are drawn
uniformly from ZN are coprime? Interestingly, this probability is bounded below
by a (very cool) constant. This derives from a beautiful fact, an informal5 proof of
which employs Euler’s product formula for the Riemann zeta function:

ζ(s) :=
∑
n≥1

1
ns

=
∏

p prime

1
1− p−s .

Claim 17.13. If k1, k2 ∼ ZN uniformly, then the probability that gcd(k1, k2) = 1 is
at least 1/ζ(2) = 6/π2.

Proof (Informal). Let p be prime. Then, every pth integer is divisible by p, so,
heuristically speaking, the probability that k1 ∼ ZN is divisible by p is 1/p. Likewise
for k2 ∼ ZN . Therefore, the probability that both k1 and k2 are divisible by p is
1/p2, so the probability that both are not divisible by p is

1− 1
p2 = 1− p−2.

5Using some tools from analytic number theory (in particular the so-called Möbius function) one
can give an elegant, formal proof of this fact by deriving the following asymptotic formula:∑

k1,k2∈ZN

gcd(k1,k2)=1

1 = N2 6
π2 +O(N logN).

Given this, it’s plain that

Pr
k1,k2∼ZN

[gcd(k1, k2) = 1] =
N2 6

π2 +O(N logN)
N2 = 6

π2 +O

(logN
N

)
,

as desired.

155

Consequently, the probability that k1 and k2 are coprime (meaning that they share
no common prime factors) is then

Pr
k1,k2∼ZN

[gcd(k1, k2) = 1] =
∏

p prime
p<N

1− p−2 =

 ∏
p prime
p<N

1
1− p−2


−1

.

Therefore,
Pr

k1,k2∼ZN
[gcd(k1, k2) = 1] ≥ 1

ζ(2) ,

where ζ(2) = ∑
n≥1 n

−2 is the famous Basel sum, which equals π2/6. �

This generalizes in the obvious way to many pairs of integers.

Fact 17.14. If k1, k2, . . . , kn ∼ ZN uniformly, then the probability that gcd(ki, kj) =
1 for all i 6= j is at least 1/ζ(n).

Again, we will not need these results in this class, but they are good to know.

156

Lecture 18
Shor’s Algorithm for Factoring Integers

Discussion 18.1. Discuss with your group what you took away from last time.

Last time, we discussed the quantum period finding (QPF) algorithm, which
allows us to find the period of a general r-periodic function f : Z→ Z, provided we
have an upper bound on r. The key quantum gate to this algorithm was of course
the quantum Fourier transform. Additionally, this algorithm required classical post-
processing in the form of the continued fractions algorithm to efficiently recover
the period r from our measurements of the quantum circuit involved in QPF.

In this lecture, we will introduce Shor’s algorithm for factoring integers, which
uses the QPF algorithm as a subroutine to factor large integers efficiently. To do this,
we will prove that factoring reduces to finding the period of a particular function.
As we will explore in a few lectures from now, Shor’s algorithm for factoring proves
that many cryptosystems (e.g., RSA) are not secure against quantum adversaries.

18.1. The Integer Factorization Problem

Hopefully, the integer factorization problem is familiar.

The Integer Factorization Problem
Input: a positive integer N .
Output: a non-trivial divisor of N .

In this problem, we require the output to be a non-trivial divisor d of N , meaning
1 < d < N and d | N , for otherwise we could always output 1 or N and be done.

Recall from the lecture on computational complexity theory that factoring can
also be phrased as a language in {0, 1}∗, namely,

Lfactoring = {x.y ∈ {0, 1}∗ : x has a non-trivial divisor that is at most y}.

157

Classically, it is expected that Lfactoring 6∈ BPP, i.e., that there is no efficient,
probabilistic classical algorithm for solving the integer factorization problem (and
this is why so much of cryptography is based on factoring). That said, it is not
hard to reason that Lfactoring ∈ NP. In this lecture, we will see that Lfactoring ∈ BQP,
which gives strong evidence that BPP 6= BQP, i.e., that efficient quantum computers
can compute a function that no efficient classical computer can. An unfortunate
side-effect of this, however, is that the whole RSA cryptosystem that underlies
much of the internet is now vulnerable to quantum attacks.

18.2. When is Factoring Easy?

Here, we will briefly spell out two cases when factoring an integer is easy.

Question 18.1. If in binary the least significant digit of N is 0, what is a non-trivial
divisor of N?

Therefore, we can always assume that the input N is odd, for otherwise the
integer factorization problem is trivial.

Fact 18.1 (AKS Test). Lprimes ∈ P, i.e., there is an efficient, deterministic classical
algorithm for deciding if N is prime or not.

Consequently, we can know with just polynomial time pre-processing whether
or not our input N has non-trivial divisors at all (i.e., if the integer-factorization
problem is even worth solving). Thus, we can always assume that the input N is
not prime (so that the integer-factorization problem has a non-trivial solution).

Claim 18.2. Suppose N = Mk for integers M ≥ 1 and k ≥ 2. Then, there is an
efficient, deterministic classical algorithm for finding M .

Proof Idea*. Simply compute k
√
N for k = 2, 3, . . . , dlog2(N)e. If N = Mk, then

logM(N) = k ≤ log2(N) = k log2(M), so you will eventually recover M by doing
this. Note that it is possible to compute k

√
N in deterministic time O(k logN) using,

for example, Newton’s method for finding the roots of a polynomial. �

Therefore, if N is a prime power, then we can efficiently recover the prime factor,
and hence efficiently solve the integer factorization problem. More generally, this
fact implies that we can always suppose that N is not a power of some smaller
integer M . Altogether, the above facts will appear in the pre-processing steps of
Shor’s algorithm, and the key point is that these checks can all be completed in

158

polynomial time on a deterministic classical computer before running the quantum
part of Shor’s algorithm.

We will now turn to the remaining cases where factoring appears harder. To do
this requires some number theory.

18.3. Some Requisite Number Theory

We begin with a fact that is hopefully familiar from a course on classical algorithms.

Fact 18.3. There exists an efficient deterministic classical algorithm (e.g., the
Euclidean algorithm) that computes gcd(x, y) for all inputs x, y ∈ Z.

Given this, we will now introduce the key mathematical object that underlies
Shor’s factoring algorithm.

Definition 18.1. The multiplicative group of integers modulo N is1

Z×N :=
(
{k ∈ {1, 2, . . . , N − 1} : gcd(k,N) = 1} ,× mod N

)
.

We call N the modulus.

Note that thanks to the Euclidean algorithm, given any integer k < N , it is
easy to check whether or not k ∈ Z×N , because it is easy to check whether or not
gcd(k,N) = 1.

Exercise 18.1.

• What is Z×p for any prime p?

• What is |Z×p | for any prime p?

Definition 18.2. The cardinality of Z×N defines Euler’s totient function,

ϕ(N) := |Z×N |,

which we saw last lecture. In words, ϕ(N) equals the number of positive integers
strictly less than N that are coprime to N .

By the previous exercise, you have proven that for all primes p, ϕ(p) = p − 1.
This says that all integers less than a prime p are coprime to p, which of course
makes sense by the definition of primality. The following are two more facts about
ϕ that are incredibly important.

1This group is also sometimes denoted by (Z/NZ)×.

159

Fact 18.4.

• ϕ(N) contains information about the prime factors of N :

ϕ(N) = N
∏
p|N

p prime

(
1− 1

p

)
.

This is called Euler’s product formula for ϕ.

• For all a ∈ Z×N (i.e., for all a coprime to N),

aϕ(N) = 1 (mod N).

This is known as Euler’s theorem, which generalizes Fermat’s little theorem.2

Altogether, we learn that ϕ(N), and hence the group Z×N , contains information
about the prime factors of N . It is ultimately this connection that Shor’s algorithm
exploits to factor N . Note that by Euler’s theorem and the well-ordering principle,
there must be a smallest positive integer r such that ar = 1 (mod N).

Definition 18.3. For a ∈ Z×N , the smallest integer r > 0 such that ar = 1 (mod N)
is called the order of a in Z×N , the order of a modulo N , or, if N is contextually
clear, just the order of a.

Exercise 18.2. Prove that for all a ∈ Z×N , there exists b ∈ Z×N such that ab = 1
(mod N). We call b the modular multiplicative inverse of a and write it as b = a−1.3

We will now see how to frame the integer factorization problem as finding the
order of some a ∈ Z×N . This, in turn, is easily framed as finding the period of a
certain function, which we will discuss in the next section.

Fact 18.5 (HW5). Let a ∈ Z×N be such that the following two conditions hold:

(i) the order r of a is even,

(ii) ar/2 6= −1 (mod N).4

2Indeed, taking N to be prime in Euler’s theorem gives Fermat’s little theorem. Interestingly,
Euler’s theorem also goes the other way, so that if aϕ(N) = 1 (mod N), then gcd(a,N) = 1.
Incidentally, the correctness of the RSA public-key cryptosystem relies on this theorem.

3Of course, this is needed to justify our unsubstantiated claim that Z×N is a group.
4In general, if x2 = 1 (mod N), then we call x a non-trivial square-root of 1 modulo N .

160

Then, gcd(ar/2 + 1, N) is a non-trivial divisor of N .5

At first, these two conditions might seem a bit ad hoc. However, thanks to the
following incredible fact, it is actually quite likely that a uniformly drawn a ∼ ZN
satisfies the above two conditions, and so this fact is of general use.6

Fact 18.6. For odd N that is not a prime power, over half of all a ∈ ZN satisfy
one of the following two conditions:

(i) gcd(a,N) > 1,

(ii) gcd(a,N) = 1 (i.e., a ∈ Z×N), the order r of a is even, and ar/2 6= −1
(mod N).

Corollary 18.7 (Reduction of Factoring to Order Finding). If a ∼ ZN uniformly
with order r, then with probability at least 1/2, either gcd(a,N) or gcd(ar/2+1, N) is
a non-trivial divisor of N . Therefore, an efficient (classical or quantum) algorithm
for computing the order r of any a ∈ Z×N implies an efficient (classical or quantum)
algorithm for factoring N .

Shor’s algorithm is based on this reduction of factoring to order finding, as we
will now see.

18.4. Shor’s Algorithm for Factoring Integers

In this section, we will present Shor’s algorithm. To do so, however, we first recast
the order finding problem discussed in the previous corollary to the problem of
finding the period of a particular function.

Definition 18.4. For all N ∈ N and all a ∈ Z×N , let

fa : Z → Z×N
: x 7→ ax mod N.

It is not difficult to see that fa is periodic with a very specific period, which you
will now prove.

5In fact, a more general statement is true that is related to something called Euclid’s lemma,
which you will also prove on HW5.

6I recommend this writeup by Keith Conrad for a proof of the following fact, which is relevant
in the context of the Miller–Rabin primality test.

161

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf

Exercise 18.3. Prove that fa is r-periodic, where r is the order of a.

We now state an important fact about the complexity of computing fa.

Fact 18.8. For all positive integers N and all a ∈ Z×N , fa is computable by
an efficient deterministic classical computer (by implementing, for example, the
modular exponentiation by repeated squaring algorithm). Hence, the quantum oracle
Ofa : |x〉|0〉 7→ |x〉|fa(x)〉 can be implemented efficiently on a quantum computer.

We are now ready to present Shor’s algorithm for the integer factorization
problem.

Shor’s Algorithm for Factoring Integers
1. Check if N is even. If so, return 2. Else, continue.
2. Check if N = Mk for integers M ≥ 1 and k ≥ 2 (using, for example,

Fact 18.2). If so, replace N ←M and continue. Else, continue with
the original N .

3. Check if N is prime (using, for example, the AKS test, i.e., Fact 18.1).
If so, return N . Else, continue.

4. Generate a ∼ ZN uniformly (by generating O(logN) random bits).
5. Check if gcd(a,N) > 1 (using, for example, the Euclidean algorithm).

If so, return gcd(a,N). Else, continue.
6. Run the quantum period finding (QPF) algorithm on fa(x) = ax modN

using n qubits, where 2n ≥ N2, to recover the order r of a.
7. Check if r is even and if ar/2 6= −1 (mod N). If so, return gcd(ar/2 +

1, N). Else, go back to step 4.

As a circuit, then, the quantum part of Shor’s factoring algorithm is simply QPF
for the particular function fa:

n

n

|0n〉 H⊗n

Ofa
FZ2n

|0n〉

Using the results we have already stated in this lecture, we will now prove the
following theorem.

162

Theorem 18.9. There exists an efficient quantum computer (namely, that specified
by Shor’s factoring algorithm) that finds a non-trivial divisor of N (and hence solves
the integer factorization problem) with probability Ω(1

log logN). Therefore, there exists
an efficient quantum computer that finds a non-trivial divisor of N with probability
at least 1− 2−O(poly(logN)). Consequently, Lfactoring ∈ BQP.

Proof. Every step in Shor’s algorithm can be done efficiently on a classical or
quantum computer, therefore all of Shor’s algorithm can be implemented on an
efficient quantum computer.

If N is even or a prime power, then Shor’s algorithm outputs a non-trivial divisor
of N with probability 1 (thanks to steps 1–3).

If, however, N is odd and not a prime power, then, after generating a ∼ ZN
uniformly, it follows from Corollary 18.7 that with probability at least 1/2, either
gcd(a,N) or gcd(ar/2 + 1, N) is a non-trivial divisor of N , where r is the order of
a. Since r ≤ ϕ(N) < N , we will find r on a single run of the QPF algorithm with
probability

Ω
(1

log log r

)
= Ω

(1
log logN

)
.

Therefore, if r′ is the output of the QPF subroutine (step 6), then with probability
at least

1
2 · Ω

(1
log logN

)
= Ω

(1
log logN

)
,

either gcd(a,N) or gcd(ar′/2 + 1, N) is a non-trivial divisor of N . In consequence,
Shor’s algorithm outputs a non-trivial divisor of N with probability at least
Ω
(

1
log logN

)
, as desired. �

In a later lecture, we will discuss the implications of this result for contemporary
cryptography, and how we are currently in need of new “post-quantum” cryptosys-
tems that can withstand quantum attacks. We also note that there are other known
efficient quantum factoring algorithms, such as one by Oded Regev that is based on
lattices, and which, at least in some respects, performs better than Shor’s algorithm
as it reduces the depth of the quantum circuit (but requires more qubits).7

7His paper is here if you are interested.

163

https://arxiv.org/abs/2308.06572

Lecture 19
Shor’s Algorithm for Discrete Logarithms

Discussion 19.1. Discuss with your group what you took away from last time.

Last time, we discussed Shor’s algorithm for factoring integers, which proves that
Lfactoring ∈ BQP. Since we expect Lfactoring 6∈ BPP, Shor’s algorithm gives strong
evidence that efficient quantum computers can perform a computational task that
no efficient classical computer can, i.e., that BPP 6= BQP. Recall that the key to
Shor’s algorithm was to reduce factoring a number N to finding the period of the
univariate function fa(x) = ax mod N , where a ∈ Z×N .

In this lecture, we will see another example of a computational task that an
efficient quantum computer can do, but that (we suspect) no efficient classical
computer can do. This is the discrete logarithm problem, which, like factoring,
underlies many important cryptographic primitives and which, also like factoring,
reduces to finding the period of a particular function. That said, the discrete log
period is “higher-dimensional”, so we will need some new techniques.

19.1. Diffie–Hellman Key Exchange

To motivate the importance of the discrete logarithm problem, we will first consider
the following seemingly impossible task, which underscores the magic of public-key
cryptography:

1. You and I are in a room full of people. We have never talked before.
2. I am going to shout something, so that everyone hears me.
3. You are going to shout something, so that everyone hears you.
4. Despite our shouting and the many eavesdroppers in the room, you

and I now know something that no one else in the room knows.

164

Believe it or not, this is, in fact, possible, thanks to a protocol discovered by
cryptographers Whitfield Diffie and Martin Hellman. It goes as follows (where now
you and I are replaced by Alice and Bob).

Diffie–Hellman Key Exchange
1. Alice and Bob are in a room full of people. They have never talked

before.
2. Alice announces the following numbers to everyone in the room:

• an integer N ,
• an integer g ∈ Z×N ,
• an integer A = ga mod N , where a is an integer that Alice keeps

to herself.
3. Bob announces B = gb mod N to everyone in the room, where b is

an integer that Bob keeps to himself.
4. Alice and Bob share the secret s = gab mod N , because Alice can

efficiently compute

Ba mod N = gab mod N = s

and Bob can efficiently compute

Ab mod N = gab mod N = s,

however no one else in the room knows s.

In a picture, Diffie–Hellman key exchange is as follows:

165

Of course, this final conclusion—that on one else in the room knows s (or, more
precisely, that no one else in the room can efficiently compute s given N, g,A,
and B)—is ultimately a belief, in the same way that “factoring large numbers is
classically hard” is a belief. Here, though, the belief is not based on the difficultly
of factoring, but rather based on the difficulty of computing discrete logarithms.

Importantly, discrete logarithms appear in all sorts of cryptographic primitives,
such as in key exchange à la Diffie–Hellman, which itself does not provide a means
to send private messages. Nevertheless, the discrete log problem underlies many
important cryptosystems, such as the ElGamal Public-Key Cryptosystem, which
does allow you to send private messages and which is used in GNU Privacy Guard
software and recent versions of PGP (“Pretty Good Privacy”).

In this lecture, we will see the discrete log problem, and we will see how quantum
computers can solve it, even in the hardest case. Consequently, the Diffie–Hellman
key exchange protocol (and in fact all cryptosystems that get their security guaran-
tees from the discrete log problem) are not secure against quantum adversaries.

19.2. The Discrete Logarithm Problem

We begin with a few definitions.

Definition 19.1.

• Let N ∈ N be a modulus (soon to be prime, but not yet), let g ∈ Z×N , and let
rg be its order.1 The group generated by g is the set

〈g〉 :=
{
g0, g1, g2, . . . , grg−1

}
⊆ Z×N ,

together with multiplication modulo N .

• We call g a generator of Z×N (a.k.a. a primitive root modulo N) iff 〈g〉 = Z×N .
In this case, Z×N is called a cyclic group.

Importantly, due to a beautiful result of Gauss, only for certain N is Z×N cyclic.

Theorem 19.1 (Gauss). The group Z×N is cyclic if and only if N is 1, 2, 4, pk, or
2pk, where p is an odd prime and k > 0.

This result will be important later. For now, let us define what a “discrete log”
is, as well as the associated “discrete log problem”.

1Recall that the order rg of g is the smallest positive integer such that grg = 1 (mod N).

166

Definition 19.2. Given h ∈ 〈g〉, the unique integer α ∈ Zrg such that h = gα is
called the discrete logarithm of h with respect to g (or just the discrete log of h for
short, especially when g is contextually clear). The discrete log of h with respect
to g is often denoted by α = logg h.

The discrete log problem over Z×N is then as follows.2

The Discrete Logarithm Problem
Input: a modulus N ∈ N, g ∈ Z×N , and h ∈ 〈g〉.
Output: logg h.

Like factoring, there are certain cases where the discrete log problem is easy
classically. We will briefly discuss these to gain some intuition for when we expect
the discrete log problem to be hard, at least classically.

19.3. When is Discrete Log Easy?

In the discrete log problem, we get to choose N and g. Here, we will see that a
poor choice of these makes the problem easy.

Exercise 19.1. If a modulus N satisfies

ϕ(N) = |Z×N | = O(logN),

argue that there is a classical algorithm that finds logg h in O(logN) time.

Therefore, if we want a classically hard instance of discrete log, then we better
choose N such that ϕ(N)� logN .

Question 19.1. For what (large) integers N can we be certain that ϕ(N)� logN?

In addition to the above, there is another way that a poor choice of modulus can
make the discrete log problem easy classically.

Theorem 19.2 (Pohlig–Hellman). If N = ∏
i p

ei
i is the prime factorization of N ,

then there exists a deterministic classical algorithm (called the Pohlig–Hellman
algorithm) that finds logg h in time

O

∑
i

ei
(

logN +√pi
) .

2Incidentally, the discrete log problem can be defined over other groups.

167

Therefore, if N is a product of “small” primes (e.g., pi = O(logN) for all i), then
there is an efficient classical algorithm for the discrete log problem.

Given these results, we see that a universal fix to make the discrete log problem
hard (at least classically) is to choose N to be a large prime p. Indeed, in this case:

• ϕ(N) = ϕ(p) = p− 1� log p, so we resolve the issue raised in Exercise 19.1,

• the runtime of the Pohlig–Hellman algorithm is O(N) = O(p), so it is not
guaranteed to be efficient.

Indeed, taking N to be a large prime is what is usually done in discrete log-based
cryptographic schemes. In addition, if N is prime, then it follows from Gauss’s3
Theorem 19.1 that Z×N is cyclic. In this case, it is typical to take g to be a generator
of Z×N , so that h can be any one of a wide range of values (namely, ϕ(N) = N − 1
many values).

The Discrete Logarithm Problem (Hard Version)
Input: a (large) prime p, a generator g of Z×p , and h ∈ 〈g〉 = Z×p .
Output: logg h.

That said, in this lecture we will proceed in generality, and see that there is an
efficient quantum computer that solves the discrete log problem in every case.

19.4. The Discrete Log Problem as Lattice Period Finding

Like factoring, the discrete log problem can be cast as a period finding problem
for a particular choice of function. Given the QPF algorithm, perhaps, then, it is
not surprising that a quantum computer can find discrete logs efficiently. That
said, the exact notion of periodicity here is more complicated than the univariate
periodicity to which QPF applies. Indeed, for discrete log, the periodicity is “higher
dimensional”. For this reason, we will now embark on a brief aside into the theory of
lattices, which are mathematical objects that capture high dimensional periodicity.

Definition 19.3.

• Let ~b1, . . . ,~bn be n linearly independent vectors in Rm, where m ≥ n. A lattice
L is all integer linear combinations of these vectors,

L =
{
z1~b1 + · · ·+ zn~bn : z1, . . . , zn ∈ Z

}
.

3That’s not a typo, the possessive form of Gauss is Gauss’s not Gauss’.

168

• Each ~v ∈ L is called a lattice vector.

• A function f : Zn → Z is L-periodic iff for all ~x ∈ Zn and all ~v ∈ L,

f(~x+ ~v) = f(~x).

Exercise 19.2. Argue that a univariate function f : Z→ Z is r-periodic iff it is
L-periodic, where L = {zr : z ∈ Z}.

Thus, the lattice-based periodicity introduced above is a natural, multivariate
generalization of the univariate function periodicity from before. Given this, we
will now see how to cast the discrete logarithm problem as finding a vector in some
lattice L that characterizes a particular L-periodic function.

Claim 19.3. Let N be a modulus, g ∈ Z×N , and h ∈ 〈g〉. Moreover, let α = logg h
be the discrete log of h with respect to g and let

Lα :=
{
z~bα : z ∈ Z

}
⊂ R2

be a lattice, where ~bα = (α, 1). Then, the bivariate function

fg,h : Z× Z→ Z
: (x, y) 7→ gxh−y mod N

is Lα-periodic.

Proof. For all ~x = (x, y) ∈ Z2 and all lattice vectors ~v = (αz, z) ∈ Lα, it holds that

fg,h(~x+ ~v) = fg,h(x+ αz, y + z)
= gx+αzh−y−z mod N

= gx+αzg−αy−αz mod N

= gxg−αy gαz−αz︸ ︷︷ ︸
=1

mod N

= gxh−y mod N

= fg,h(x, y)
= fg,h(~x).

Therefore, fg,h is Lα-periodic, as claimed. �

Crucially, there is an alternate characterization of the periodicity of fg, h.

169

Fact 19.4 (HW6). For all ~x, ~y ∈ Z2, f(~x) = f(~y) iff there exists ~v = (v1, v2) ∈ Z2

such that v2α = v1 (mod rg), where rg is the order of g modulo N .

To finish casting the discrete log problem as a period finding problem, we will
need the following fact, which can be found in any standard text on number theory.4

Fact 19.5. Let a, b, and n be integers such that gcd(a, n) = 1. Then, there exists
a unique integer x ∈ Zn such that ax = b (mod n). Moreover, there exists an
efficient, deterministic, classical algorithm to find x.5

In univariate period finding in which we want to find the period r of an r-periodic
function f : ZN → ZN , recall that it sufficed to find an integer z such that zr = kN
(for some integer k) and gcd(z, r) = 1. In other words, it sufficed to find a lattice
vector in the lattice L = {zr : z ∈ Z} that is an integer multiple of N and that
satisfies gcd(z, r) = 1. A similar thing is true here for the bivariate case, in which
to solve for α (and hence understand the periodicity of fg,h), it suffices to find a
lattice vector ~v = (v1, v2) ∈ Lα such that gcd(v2, rg) = 1. Ultimately, this affords
a reduction from the discrete log problem to what one might call “lattice period
finding”.

Corollary 19.6 (Reduction from Discrete Log to Lattice Period Finding, HW6).
Given a modulus N , g ∈ Z×N , its order rg, and h ∈ 〈g〉, an efficient (classical
or quantum) algorithm for finding a lattice vector ~v = (v1, v2) ∈ Lα such that
gcd(v2, rg) = 1 implies an efficient (classical or quantum) algorithm for finding the
discrete log α = logg h.

19.5. Shor’s Algorithm for the Discrete Log Problem

We now state an important fact about the complexity of computing fg,h, which is
related to the complexity of computing fa from the previous lecture.

Fact 19.7. For all moduli N and all g, h ∈ Z×N , fg,h is computable by an effi-
cient, deterministic, classical computer (by implementing, for example, the modular
exponentiation by repeated squaring algorithm). Hence, the quantum oracle

Ofg,h : |x〉|y〉|0〉 7→ |x〉|y〉|fg,h(x, y)〉

can be implemented efficiently on a quantum computer.
4See, for example, Stark’s An Introduction to Number Theory.
5For example, one could use the extended Euclidean algorithm to find a−1 (the modular multi-
plicative inverse of a, which we introduced last lecture) and set x = a−1b mod n.

170

We are now ready to present Shor’s algorithm for the discrete log problem. In
the following, N is a modulus, g ∈ Z×N , rg is the order of g (and obviously satisfies
rg ≤ N), and h ∈ 〈g〉. Note, if you did not know rg a priori, then you could use
Shor’s order finding algorithm from last lecture to first find rg, and then proceed
with the algorithm below. That said, in most cases of discrete log, rg = N − 1,
because discrete log is really only interesting when N is prime and g is a generator
of Z×N . Thus, it is natural to assume that we already know rg.

Shor’s Algorithm for Discrete Log
1. Prepare 2m+ n qubits in the state |0m〉|0m〉|0n〉, where 2m ≥ rg and

2n ≥ N .6

2. Run the bivariate QPF circuit below on fg,h(x, y) = gxh−y mod N
to recover a lattice vector (v1, v2) ∈ Lα.7

3. Check if gcd(v2, rg) = 1. If so, continue. If not, go back to step 1.
4. Solve for α in v2α = v1 (mod rg) (using, for example, the extended

Euclidean algorithm) and return α.

The bivariate QPF circuit mentioned above is just the QPF circuit but with
another register, and with a QFT over Z2m × Z2m as opposed to Z2m. In particular,
it is the quantum circuit:

m

m

n

|0m〉 H⊗m

Ofg,h

FZ2m

|0m〉 H⊗m FZ2m

|0n〉

Note, the reason we need n qubits in the bottom register and only m qubits in each
of the upper registers is because the image of fg,h is ZN but the domain is just Zrg .

We will now state the main theorem, a special case of which you will prove on
HW6 (namely, you will prove the “exact case” in which it is assumed that rg = 2m).

6Since N ≥ rg for all discrete log instances, n ≥ m.
7In fact, this step is only exact in the “exact case” in which rg = 2m. In the “non-exact case”
in which rg is not a power of two (so rg - 2m), this step succeeds with a sufficiently high
probability. We will not prove this in this class (because it is quite complicated), but the point
is basically the same as the non-exact cases we have studied for QPE and QPF. For the details,
see Shor’s original paper, which is quite accessible, especially at this point in the course.

171

https://arxiv.org/abs/quant-ph/9508027

Theorem 19.8 (HW6). There exists an efficient quantum computer (namely, that
specified by Shor’s discrete log algorithm) that outputs logg h (and hence solves the
discrete log problem) with probability

Ω
(1

log log rg

)
= Ω

(1
log logN

)
= Ω

(1
log n

)
.

Thus, there exists an efficient quantum computer that solves the discrete log problem
with probability at least 1− 2−O(poly(n)).

In consequence, quantum computers can break any cryposystem whose security
guarantee comes from the assumption that the discrete logarithm problem is hard.
We will explore this cryptographic implication in two lectures from now. Before
this, though, we will see a problem that quantum computers can solve efficiently,
and that, in some sense, subsumes all the other interesting quantum algorithms
that we have seen so far. In this sense, the problem we will discuss next lecture is
the problem that quantum computers can solve efficiently.

172

Lecture 20
The Hidden Subgroup Problem

Discussion 20.1. Discuss with your group what you took away from last time.

Last lecture, we discussed Shor’s algorithm for the discrete logarithm problem.
Like Shor’s factoring algorithm we saw that the discrete log problem reduces to a
period finding problem, albeit in higher dimensions. Nevertheless, Shor’s discrete log
algorithm affords an exponential speed-up relative to all currently known classical
algorithms for discrete log.

In this lecture, we will introduce the problem that unifies all the interesting
quantum exponential speed-ups we have seen so far. In particular, we will define the
so-called hidden subgroup problem (abbreviated HSP), and we will see that Simon’s
problem, the factoring problem, and the discrete log problem can all be framed as
an instance of this problem. Moreover, we will see that there is actually an efficient
quantum algorithm for the abelian HSP (abbreviated AHSP), which implies an
efficient quantum algorithm for Simon’s problem, factoring, and discrete log. Thus,
in a very real sense, the quantum algorithm for AHSP is the quantum algorithm
that subsumes most of the important quantum algorithms that we know.1

20.1. Groups, Hiding Functions, and the Hidden Subgroup Problem

To define the hidden subgroup problem requires several new mathematical notions.
(That said, the notion of a group should be familiar, as we have seen many examples
of groups in this course.)

Definition 20.1.

• Let G be a non-empty set and · : G×G→ G a binary operation on G. We

1For a great lecture on the HSP (and quantum algorithms for other algebraic problems), I
recommend Andrew Childs’ tutorial from QIP 2021, which is available on YouTube here.

173

https://www.youtube.com/watch?v=M0e5gkf7QSQ

call the pair (G, ·) a group iff the following three conditions hold:2

(i) the binary operation · is associative, i.e., for all a, b, c ∈ G, a·(b·c) = (a·b)·c,
(ii) G has an identity, i.e., there exists e ∈ G such that for all a ∈ G,

a · e = e · a = a,
(iii) G contains inverses, i.e., for all a ∈ G, there exists a−1 ∈ G such that

a · a−1 = a−1 · a = e.

• The order of (G, ·) is the cardinality of G, namely |G|.

• A group (G, ·) is finite iff its order |G| is finite.

• We say (G, ·) is abelian iff the binary operation · is commutative, i.e., for all
a, b ∈ G, a · b = b · a. Otherwise, (G, ·) is non-abelian.

• We call H a subgroup of (G, ·) (or just a subgroup of G if the binary operation
is contextually clear) iff H is a subset of G and (H, ·) is a group. We write
H ≤ G iff H is a subgroup of G.

Exercise 20.1.

1. Is ZN a finite non-abelian group?

2. Is Z×N a finite abelian group?

3. What is the identity element in Zn2 = ({0, 1}n,⊕), where ⊕ is bitwise XOR?

4. Is
1 + ZN =

(
{1, 2, 3, . . . , 1 + (N − 1)},+ mod N

)
a subgroup of ZN?

Definition 20.2. Let G be a group, H a subgroup of G, and X a set. We say a
function f : G→ X hides the subgroup H iff for all x, y ∈ G,

f(x) = f(y) ⇐⇒ y = x · h for some h ∈ H.3

In this case, we call H the subgroup hidden by f , or, if f is contextually clear, the
hidden subgroup.

2Often the binary operation in a group is contextually clear. In this case, we will sometimes
label a group (G, ·) not as a tuple, but just by the set G.

3For the mathematically inclined, this is equivalent to the statement that f is constant on the
left cosets of H and is different on the different left cosets of H.

174

Already, you may see how hidden subgroups relate to Simon’s problem.

Example 20.1. Let

• G = Zn2 = ({0, 1}n,⊕), where ⊕ is bitwise addition modulo 2,

• H = {0n, s} for some s ∈ {0, 1}n\{0n} (indeed, H ≤ G, as you will prove on
HW6),

• X = {0, 1}n,

• and f : G→ X such that

f(x) = f(y) ⇐⇒ y = x or y = x⊕ s.

Since

y = x or y = x⊕ s ⇐⇒ y = x⊕ h for some h ∈ H = {0n, s},

it is plain that f hides the subgroup H ≤ G.

In order to define the hidden subgroup problem requires just one more mathe-
matical notion, which should also be somewhat familiar given our past discussions
of universal gate sets and generators of Z×N .

Definition 20.3. Let (G, ·) be a group. We call S ⊆ G a generating set of (G, ·)
iff for all a ∈ G, there exist s1, s2, · · · , sk ∈ S such that

a = s1 · s2 · · · · · sk.

In other words, S is a generating set of (G, ·) iff every element in G can be written
as elements in S that are composed using the group operation in (G, ·).

Question 20.1. Is S = {0} a generating set of ZN? What about S = {1}?

We are now in a position to define the hidden subgroup problem.

The Hidden Subgroup Problem (HSP)
Input: A group (G, ·) and a function f : G → X as an oracle
that hides a subgroup H ≤ G.4

Output: A generating set of H by querying f .
4In fact, one needs to restrict to discrete groups that can be computationally interpreted, but
these are subtleties that we will not address.

175

Note, the abelian HSP (abbreviated AHSP) is the HSP when the underlying group
(G, ·) is abelian. Similarly, the non-abelian HSP is the HSP when the underlying
group is non-abelian.

Exercise 20.2. In terms of |G|, classically, how many queries to f suffice to solve
the HSP?

Indeed, classically one can show the following theorem, whose proof is similar in
spirit to the proof that Simon’s problem is classically hard.5

Theorem 20.1. Let G be a finite group with N distinct subgroups H. Then, a
classical computer must make Ω(

√
N) queries to solve the HSP. In many cases,

N � log |G|, so this algorithm is not efficient.

Given this, we will now see why the AHSP is particularly interesting, and why
having an efficient algorithm for it implies an efficient algorithm for a myriad of
other interesting problems.

20.2. The Many Reductions to AHSP

Here, we will show that several problems we have seen in this course reduce to
particular instances of the AHSP. Therefore, an efficient quantum algorithm for the
general AHSP implies an efficient quantum algorithm for all of these problems.6

Let’s start with Simon’s problem. Example 20.1 proves that Simon’s problem
involves a hiding function. On HW6, you will prove the following reduction.

Fact 20.2 (Reduction from Simon’s Problem to AHSP, HW6). An efficient (classical
or quantum) algorithm for the AHSP implies an efficient (classical or quantum)
algorithm for Simon’s problem.

Beyond Simon’s problem, period finding is also an instance of the AHSP, as the
following claim shows.

Claim 20.3. Let f : Z→ Z be an r-periodic function such that f(0), f(1), . . . , f(r−
1) are all distinct values. Moreover, let G = Z and X = Z. Then, f hides
H = rZ = {. . . ,−2r,−r, 0, r, 2r, . . . }.

5For a proof, see, for example, Andrew Childs’ notes here.
6Here we will not discuss the Deutsch–Jozsa problem, even though it does (at least in certain
cases), reduce to an instance of the AHSP.

176

https://www.cs.umd.edu/~amchilds/teaching/w11/l03.pdf

Proof. It is easy to see that H ≤ Z. Since f is r-periodic, for all h = kr ∈ rZ,

y = x+ h =⇒ f(x) = f(y).

Finally, since f(0), f(1), . . . , f(r − 1) are all distinct values, it holds that if there
does not exist k ∈ Z such that y = x + rk, then f(x) 6= f(y). Thus, taking the
contrapositive of this last statement, we get that

f(x) = f(y) =⇒ y = x+ kr for some k ∈ Z
=⇒ y = x+ h for some h ∈ H = rZ.

Putting the above two implications together then gives

f(x) = f(y) ⇐⇒ y = x+ h for some h ∈ H.

Therefore, f hides H, as claimed. �

Consequently, we obtain a reduction from period finding to the AHSP. Using the
fact that factoring is just a particular instance of period finding (see Lecture 17), it
holds that factoring also reduces to the AHSP.

Corollary 20.4 (Reduction from Period Finding/Factoring to AHSP). An efficient
(classical or quantum) algorithm for the AHSP implies an efficient (classical or
quantum) quantum algorithm for period finding (and hence an efficient (classical or
quantum) algorithm for factoring integers).

Finally, we will prove the more general result that lattice period finding is also
an instance of the AHSP.

Claim 20.5. Let f : Zn → Z be an L-periodic function for some lattice L such that
if ~y − ~x 6∈ L, then f(~x) 6= f(~y).7 Moreover, let G = Zn and X = Z. Then, f hides
H = L ≤ Zn.

Proof. It is easy to see that H = L ≤ Zn. Moreover, since f is L-periodic, if ~v ∈ H,
then

~y = ~x+ ~v =⇒ f(~x) = f(~y).
Finally, since ~y − ~x 6∈ H implies f(~x) 6= f(~y), it holds that

f(~x) = f(~y) =⇒ ~y − ~x ∈ L
=⇒ ~y = ~x+ ~v for some ~v ∈ H.

7In the case of a univariate, r-periodic function f : Z→ Z, this condition is equivalent to the
condition that f(0), f(1), . . . , f(r − 1) are all distinct.

177

Putting the above two implications together then gives

f(~x) = f(~y) ⇐⇒ ~y = ~x+ ~v for some ~v ∈ H.

Therefore, f hides H, as claimed. �

Therefore, since the discrete log problem is an instance of lattice period finding,
we obtain the following reduction.

Corollary 20.6 (Reduction from Discrete Log to AHSP). An efficient (classical
or quantum) algorithm for the AHSP implies an efficient (classical or quantum)
algorithm for the discrete logarithm problem.

All together, we learn that almost all of the interesting quantum algorithms
we have studied in this course (save, for example, Grover’s algorithm) are just
particular instances of the AHSP. In the next section, we will briefly cover how the
quantum part of the quantum algorithm for the general AHSP works.

20.3. An Efficient Quantum Algorithm for AHSP

We will begin with the following fact whose proof is, unfortunately, beyond the
scope of this course, as it requires a considerable amount of group theory and
representation theory.

Fact 20.7. Let G be a finite group. There exists an efficient quantum computer
that solves the AHSP with probability Ω(1) using O(log |G|) many queries to the
hiding function f . Therefore, if f is efficiently computable, then there exists an
efficient quantum computer that solves the AHSP with probability Ω(1).

Note, in the case of lattice period finding (where the group G is infinite), this
algorithm can still work by imposing a “cutoff” on the size of the group. Indeed,
this is exactly what we did for univariate period finding, where we were given some
upper-bound on the period, and so we were able to solve the period finding problem
on a finite part of the underlying group.

To gain some intuition for how the quantum part of this algorithm works, we will
briefly go through the quantum circuit so to reveal that it is structurally similar to
many of the other quantum circuits we have seen throughout this course.

The Quantum Part of the Quantum Algorithm for the AHSP
1. Prepare 2n qubits in the state |0n〉|0n〉, where 2n ≥ |G|.

178

2. Apply H⊗n to the first n qubits.
3. Apply Of .
4. Measure the last n qubits.
5. Apply the QFT over G, denoted FG, to the first n qubits.
6. Measure the first n qubits.

As a quantum circuit, the quantum part of the quantum algorithm for the AHSP
is as follows.

n

n

|0n〉 H⊗n

Of
FG

|0n〉

1 2 3 4 5

Of course, this circuit is structurally identical to the QPF circuit (both the
univariate and bivariate instances) and the circuit in Simon’s problem. As the last
section proves, this is not a coincidence, because all of these problems are in some
sense the same problem—namely, just the AHSP for a different choice of group and
function. Because of this, the analyses of the quantum algorithms for all of these
problems were nearly identical, and that is because, structurally speaking, they use
the same quantum circuit. Indeed, using the circuit above, it is a relatively easy
exercise to show the following fact.

Fact 20.8. Let |ψi〉 be the state at step i. Then,

|ψ4〉 = 1√
|H|

∑
h∈H
|g0 · h〉|f(g0)〉.

Thus, what you get in the general, AHSP quantum algorithm is a uniform
superposition of all elements in the first register that are consistent with the
measurement result in the second register, but shifted (according to the group
operation) by whatever the argument in the measurement outcome is. This follows
immediately from the structure of the AHSP. In the next step of the quantum
algorithm, namely, applying the quantum Fourier transform (QFT) over the group
G, denoted FG, is more difficult. Suffice it to say, the basic idea is the same: FG
weeds out the “period” in the state |ψ4〉, so that after you measure |ψ5〉, all it takes
is polynomial time classical post-processing (e.g., continued fractions) to learn the
subgroup H. For more on the quantum algorithm for the AHSP, I recommend this
survey article by Andrew Childs and Wim van Dam.

179

https://arxiv.org/abs/0812.0380
https://arxiv.org/abs/0812.0380

20.4. The Non-Abelian HSP*

Given that the past discussions have all been about the abelian HSP, perhaps the
most obvious question to ask is, what about the non-abelian HSP? Indeed, this
is a great question with a rich history, but the immediate reply is that, unlike
AHSP, there is no known, general quantum algorithm for the non-abelian HSP.
That said, there are many partial results known,8 which are interesting given the
computational problems that reduce to instances of the non-abelian HSP.

For example, there is a reduction from the graph isomorphism problem to the HSP
over the symmetric group, which is the (non-abelian) group of bijections from a set
back to itself. As you may know, the graph isomorphism problem is one of the most
important problems in computational complexity theory, in part because it is neither
known to be NP-complete nor is it known to be classically or quantumly tractable.
Thus, what this reduction shows is that if quantum computers can efficiently solve
the general, non-abelian HSP, then quantum computers can efficiently solve the
graph isomorphism problem as well. Many consider that unlikely.

Moreover, there is also an important problem to do with lattices that reduces to
the HSP over the dihedral group, which is the (non-abelian) group of symmetries of
a regular polygon. The problem is called the unique shortest vector problem, and
next lecture we will briefly describe what (variants of) this problem are all about.
The upshot is that these lattice problems may underlie future cryptosystems, and
the inability of quantum computers to solve the non-abelian HSP increases our
credences that these cryptosystems are quantum-secure.

8See, for example, Greg Kuperberg’s sieve for the HSP over the dihedral group here, as well as
the Ettinger–Høyer–Knill Theorem, available here.

180

https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/quant-ph/9901034

Lecture 21
Quantum and Post-Quantum Cryptography

Discussion 21.1. Discuss with your group what you took away from last time.

Last lecture, we discussed the hidden subgroup problem (HSP), and we learned
that there is a quantum algorithm that can solve this problem efficiently. Moreover,
we saw that Shor’s algorithms for factoring and the discrete logarithm problem are
both instances of the abelian HSP (for different choices of the underlying group),
as is Simon’s problem.

Taken together, Shor’s algorithms for factoring and the discrete log problem are a
huge concern when it comes to cryptography, as many contemporary cryptosystems
get their security guarantees from the factoring and discrete log problems. Thus, in
a quantum world, quantum adversaries (i.e., bad actors with access to a universal,
fault-tolerant quantum computer) could easily read internet traffic, break into
private bank accounts, decrypt intercepted communications (such as in harvest
now, decrypt later surveillance), etc. In this lecture, we will discuss some details of
public-key cryptography, and we will also discuss two different ways to remedy the
fact that quantum computers break many current public-key cryptosystems.

21.1. Public-Key Cryptography

While there are many different types of cryptosystems, among the most practical
and important are those that are public-key cryptosystems (or PKC s for short).
These cryptosystems allow the following seemingly-impossible task, part of which
we discussed when we talked about the Diffie–Hellman protocol a few lectures ago.

1. You and I are in a room full of people, and we have never talked
before.

2. You and I shout across the room, and we make sure everyone hears.

181

3. After a short time, you and I shout across the room, and we make
sure that everyone hears. This time, however, only you and I un-
derstand what we are saying to each other. Because of this, we can
publicly communicate our private messages, and no one (at least on
a reasonable time scale) will be able to figure out what we are saying.

That this is possible is evidently important in our present-day world, because,
as unfortunate as it is, there are many types of bad actors who are interested in
eavesdropping on our private conversations. Now, there are many computational
solutions to this, but there is overwhelming agreement that any genuine solution
should be one in which the eavesdroppers know and understand exactly how it is
we are protecting our messages. This is called Kerckhoffs’s principle.

In the context of PKCs, Kerckhoffs’s principle says that the security guarantee
of the PKC cannot come from an assumption that is based on an eavesdropper not
knowing some part of how the system works. Rather, it must stem from a sort of
computationally difficult problem that is intrinsic to the system. To see how to put
this formally, we will now briefly explain what a PKC even is, along with some of
the formal notions that go in to defining their security. To do this right, however,
requires the following definition.

Definition 21.1. A function ε : N → [0,∞) is negligible iff for all c ∈ N ∪ {0},
there exists Nc ∈ N such that for all n > Nc,

ε(n) < 1
nc
.

Exercise 21.1. Determine which of the following functions are negligible:

• 1
3n4+n3

• 1
2n

• 1
(1.0000000001)n

• 1
2c logn , c ≥ 0.

We will now formally define what a PKC is.

Definition 21.2.

• A public-key cryptosystem (abbreviated PKC) Π is a triple of classical, proba-
bilistic, polynomial time algorithms (Gen, Enc, Dec) such that:

182

(i) Gen is a key generation algorithm.
Input: A unary string 1n, where n is a security parameter.1

Output: (PK, SK), where PK is a public key (a.k.a. an encryption
key) and SK is a secret key (a.k.a. a decryption or private key).

We write this as (PK, SK)← Gen(1n).
(ii) Enc is an encryption algorithm.

Input: A public key PK and a plaintext message m.
Output: A ciphertext c.

We write this as c← Enc(PK,m).
(iii) Dec is a decryption algorithm.

Input: A secret key SK and a ciphertext c.
Output: A plaintext message m’.

We write this as m′ ← Dec(SK, c).

• We say Π is complete (a.k.a. correct) iff there exists a negligible function ε
such that for all security parameters n and all plaintext messages m,

Pr
(PK,SK)←Gen(1n)
c←Enc(PK,m)
m′←Dec(SK,c)

[m′ = m] = 1− ε(n).

In other words, with probability 1− ε(n) over the internal randomness of Gen,
Enc, and Dec, decrypting any encrypted message m will return the original
message m with overwhelming probability.

Example 21.1.

• The Rivest–Shamir–Adleman (RSA) cryptosystem. It is complete.

• The ElGamal cryptosystem. It is also complete.

Given a PKC, one of the many things we would like it to be is secure.2 Note
1You can think of the security parameter as specifying the length of the public key, i.e., |PK| ≈ n.
2You also want it to admit authentication, so that you can be confident who you are talking to
is who they say they are. This is usually done using a Message Authentication Code (MAC),
which itself is a triple of classical algorithms that satisfy certain constraints. We will not
discuss MACs here, but any good book on cryptography will, e.g., Stinson and Paterson’s
Cryptography: Theory and Practice.

183

that it more or less suffices to define security with respect to single bit messages,
because an overall message is just a bunch of single bits.3

Definition 21.3.

• We say a PKC Π = (Gen, Enc, Dec) is classically secure iff for all classical,
probabilistic, polynomial time adversaries A, there exists a negligible function
ε such that for all security parameters n and all single-bit messages m ∈ {0, 1},

Pr
(PK,SK)←Gen(1n)
c←Enc(PK,m)
m′←A(PK,c)

[m′ = m] ≤ 1
2 + ε(n).

In other words, no efficient, classical adversary A can recover m with just
the ciphertext c and public key PK better than they could by just randomly
guessing m.

• We say a PKC Π is quantum-secure iff the above definition holds for all efficient
quantum adversaries A.

Exercise 21.2. Let Π be a PKC. Argue that if a classical or quantum adversary A
knows SK, then Π is not classically or quantum-secure, respectively.

Fact 21.1 (Shor).

• The RSA cryptosystem is not quantum-secure.

• More generally, if Π is a PKC with primitives that rely on the security of
instances of the abelian hidden subgroup problem (e.g., factoring, discrete log,
or elliptic curves), then Π is not quantum-secure.4

Therefore, many contemporary cryptosystems are not quantum-secure. This
raises a very important question: what should we do about that?

3For example, to encrypt a k bit message m ∈ {0, 1}k, you can do it as follows:

Enc(PK,m) = Enc(PK,m0).Enc(PK,m1).Enc(PK,mk−1).

Of course, there are caveats to this, but we will not discuss those details here. See, e.g., Stinson
and Paterson’s Cryptography: Theory and Practice for details.

4For example, Diffie–Hellman key exchange and the whole ElGamal cryptosystem are not
quantum-secure, because both rely on the security guarantee of the discrete log problem.

184

21.2. The Quantum Alternative: Quantum Cryptography

To physicists, the most theoretically interesting solution here is to “upgrade” the
algorithms used in the definition of PKC to quantum algorithms and also to upgrade
the communication channels used to quantum channels, so that they transmit
quantum states and not just bits. At least on the surface, this is interesting from
a quantum information point of view, because quantum mechanics forbids any
eavesdropper from copying the quantum information thanks to the no-cloning
theorem. In this respect, any eavesdropper will necessarily disturb the quantum
state being sent. Thus, again on the surface, it sure seems like quantum-based
PKCs could be as secure as we are confident that the laws of quantum mechanics
are a true representation of how the world works. Of course, it doesn’t turn out to
be quite that good, but it’s an interesting prospect nonetheless.

To illustrate one example of this “quantum alternative”, we will present a famous
quantum protocol for key distribution called BB84. Here, “BB” encodes the last
initials of its two inventors, Charles Bennett and Gilles Brassard, and the number
“84” is the year in which they proposed it. Interestingly, BB84 is provably secure in
an information-theoretic sense, provided certain assumptions hold (one of which is
rather idealistic, as we shall discuss below).

The BB84 Quantum Key Distribution (QKD) Protocol
1. Given a security parameter n, Alice generates x, y ∼ {0, 1}n uniformly.

Alice then prepares the n-qubit state

|ψ〉 =
n−1⊗
k=0
|ψxkyk〉,

where

|ψxkyk〉 =



|0〉 if xkyk = 00
|1〉 if xkyk = 10
|+〉 if xkyk = 01
|−〉 if xkyk = 11.

In other words, Alice encodes x quantumly as follows:
• If xk = 0, then she randomly assigns one of |0〉, |+〉 to it.
• If xk = 1, then she randomly assigns one of |1〉, |−〉 to it.

2. Alice sends |ψ〉 to Bob.

185

3. In transit, |ψ〉 will change due to imperfections in the quantum
channel (e.g., imperfections in the fiber optic cable used to send
photons in a certain polarization state) or due to an eavesdropper,
Eve, interfering with the state |ψ〉, perhaps trying to gain information
about the state. Here, to illustrate how the protocol works, we will
make the unrealistic, physical assumption that the quantum channel
is perfect (i.e., noiseless) and that the state Bob receives is pure.

4. Bob receives a state |φ〉, which was potentially tampered with by
Eve. Bob generates y′ ∼ {0, 1}n uniformly, and then measures |φ〉
using the Hermitian operator

H =
n−1⊗
k=0

Wy′k
,

where

Wy′k
=
Z if y′k = 0
X if y′k = 1.

Bob then constructs an n-bit string x′, where

x′k =



0 if Wy′k
= Z and Bob measured |0〉,

0 if Wy′k
= X and Bob measured |+〉,

1 if Wy′k
= Z and Bob measured |1〉,

1 if Wy′k
= X and Bob measured |−〉.

At this point in the protocol, it is easy to reason that if yk = y′k
for some k, and if there was no noise and no eavesdropping on the
channel (so that |φ〉 = |ψ〉, then xk = x′k with certainty.

5. Over a (not necessarily secure) classical communication channel, Alice
announces y and Bob announces y′.

6. Alice and Bob discard any bits xk and x′k for which yk 6= y′k. This
corresponds to the bits where Bob measured a different basis than
Alice prepared. Supposing they exist, the remaining bits of xk and
x′k represent a semi-private (and possibly noisy) key.

7. At this point, Alice and Bob need to understand how much Eve might
know about x and x′. To do this, they will sacrifice about half of the
remaining bits of x and x′ to “test” for Eve. Note, the sacrificed bits
are chosen randomly. For Alice, the sacrificed bits form a string w

186

and the remaining, unsacrificed bits form a string z, while for Bob,
the sacrificed bits form a string w′ and the remaining, unsacrificed
bits form a string z′.

8. Alice and Bob compare w and w′ over the classical channel. If the
error rate between w and w′ is above some pre-chosen threshold, then
they abort the protocol. Otherwise, they continue.

9. Alice and Bob now have the strings z and z′ whose bits agree with
high probability. Using classical techniques known as information
reconciliation and privacy amplification, Alice and Bob can “boost”
the strings z and z′ to become a usable secret key SK.5

In the above, information reconciliation is a sort of “distributed error correction”
in which Alice and Bob can boost the probability that z and z′ agree in all positions
with high probability (though this will invariably leak a small amount of information
to Eve). On the other hand, privacy amplification is a classical technique involving
a suitable hash function that takes z and z′ (which after information reconciliation
are more or less the same string) and compresses it to a shared string that Eve will
know almost nothing about (despite knowing a little bit about z and z′).

Now, as presented, the key thing to note about BB84 is that if done via a perfect,
noiseless quantum channel, then Alice and Bob can detect Eve’s presence with high
probability. This is due to the following, informal fact.
Fact 21.2 (Informal). The more information Eve gains from |ψ〉, the more x and
x′ will differ in the BB84 protocol.

The main difficulty in proving the above fact is that Eve can use any strategy
that is allowed by quantum mechanics. In particular, it is not sufficient to consider
what happens if Eve interacts with the state using some unitary transformation
like CNOT, nor is it sufficient to consider what happens if Eve measures the state
in some basis. Nevertheless, there is a simple, no-cloning-like argument for why
Eve cannot extract information from the state, which you will show on HW6.
Fact 21.3 (HW6). Fix n,m ≥ 1 and |u〉 ∈ C2m, and let U ∈ U(2n+m) be such that
for all |ψ〉 ∈ C2n,

U |ψ〉|u〉 = |ψ〉|vψ〉
for some |vψ〉 ∈ C2m that (in general) depends on |ψ〉. If |ψ〉, |φ〉 ∈ C2n are such
that 〈ψ|φ〉 6= 0, then

|vψ〉 ∼ |vφ〉,
5For example, they could use SK with a one-time pad (OTP) that, with the assumptions made
in our presentation of BB84, admits provable, information-theoretic security.

187

where ∼ denotes the operational equivalence between states.

In the context of BB84, the above fact implies the following corollary.

Corollary 21.4. If Eve tries to glean information from the intercepted BB84 state
|ψ〉 by applying a unitary transformation like that in the above fact (which notably
does not disturb the BB84 state), then she will not be able to learn anything from
the state by measuring |vψ〉, because the state |vψ〉 is operationally the same for all
possible intercepted BB84 states |ψ〉.

We will now discuss some of the downsides to BB84. In our presentation of
it, we assumed the existence of a noiseless quantum channel, which is physically
untenable.6 In reality, there will always be noise in the quantum signal, which
implies that in BB84, Bob will never receive the exact state |ψ〉 that Alice prepared,
even if there is no eavesdropper. Of course, we can imagine error-correcting the
channel, but still Alice and Bob will need a way of determining whether the error
in Bob’s state is ultimately due to imperfections in the channel or due to an
eavesdropper. You can imagine that this is complicated.

Another big downside of BB84 (and in fact all quantum cryptography schemes) is
that they assume a world in which scalable, fault-tolerant quantum devices not only
exist, but one in which they are somewhat mainstream. This, of course, is far away,
because, at least at the moment, such quantum systems are really only achievable in
advanced scientific laboratories that have the resources to properly shield quantum
states from their environment. Given this (and also many other reasons7), it is
natural to consider what many regard as the more practical alternative for the
future of cryptography.

21.3. The Classical Alternative: Post-Quantum Cryptography

Besides the quantum alternative, there is also the classical alternative, which most
call the “post-quantum” or “quantum-resistant” alternative. This alternative is to
build future cryptographic schemes not based on quantum devices, but rather to
just do the “same” classical cryptography as before, but upgrade the cryptosystems
so that they get their security guarantees from problems that we suspect are not
in BQP. From a practical and infrastructural perspective, this is arguably the
most sensible approach, because, if possible, it implies that we do not need to

6One also has to assume that Alice and Bob possess a classical authenticated channel, but we
will not discuss that subtlety here.

7See this note from the National Security Agency (NSA) for others.

188

https://www.nsa.gov/Cybersecurity/Post-Quantum-Cybersecurity-Resources/

completely revamp hardware to be quantum-compatible. Rather, all it takes is a
software update to run whatever new classical algorithm that underlies the new
cryptosystem. Any cryptographic proposal like this falls under the heading of
post-quantum cryptography, because it is classical cryptography in a quantum world
that is resistant to quantum adversaries.

Of course, it is not easy to come up with a new classical cryptosystem. You might
think, “why not just base it on some NP-complete problem like 3-SAT?” Indeed,
this is worth thinking about for a second.

Exercise 21.3. We suspect BQP 6= NP, so why not devise a purely classical PKC
whose security guarantee stems from an NP-complete problem like 3-SAT?

One reason this doesn’t work is because you want the security guarantee of a
cryptosystem to come from a problem that is hard on average, not from a problem
that is hard in the worst case, the latter being how NP problems are defined.8
This is why problems like factoring are used in today’s cryptosystems, because it
seems hard in almost every case, provided the numbers involved are large enough.
Interestingly, the problems we mention below possess this feature in a very formal
sense, since they exhibit what is called a worst-to-average case reduction. This
means that an efficient algorithm for the (ostensibly easier) average case problem
implies an efficient algorithm for the (ostensibly harder) worst case problem. Thus,
if there is no efficient algorithm for the worst case problem, then there is no efficient
algorithm for the average case problem. That is a superb security guarantee!

Before discussing some of these ideas, however, we note that post-quantum
cryptography is a huge field, and there is no way to do it justice in just a single
lecture. Because of this, below we will focus in on a small (but very important)
corner of post-quantum cryptography, namely, lattice-based cryptography. For this
reason, we will need to recall some things about lattices.

Definition 21.4.

• Let ~b1, . . . ,~bn be n linearly independent vectors in Rm, where m ≥ n. Recall
that a lattice L is all integer linear combinations of these vectors,

L =
{
z1~b1 + · · ·+ zn~bn : z1, . . . , zn ∈ Z

}
.

• B =
{
~b1, . . . ,~bn

}
is called a basis of the lattice L.

8There are other reasons, too. See, for example, this paper by Goldreich and Goldwasser On the
Possibility of Basing Cryptography on the Assumption that P 6= NP, and also Impagliazzo’s
famous paper, A Personal View of Average-Case Complexity, available here.

189

https://eprint.iacr.org/1998/005
https://ieeexplore.ieee.org/document/514853

• Each ~v ∈ L is called a lattice vector.

Given a lattice, it is guaranteed that there is a shortest vector in the lattice, with
respect to the usual Euclidean `2-norm.

Question 21.1. Given a lattice L, what lattice vector ~v = (v1, v2, . . . , vn) ∈ L
minimizes the `2-norm,

‖~v‖2 =
√
v2

1 + v2
2 + · · ·+ v2

n ?

This isn’t all that interesting. What is interesting, however, is the shortest
non-zero lattice vector, where here “shortest” is meant with respect to the `2-norm.9

Definition 21.5.

• Let L be a lattice. We write λ1(L) for the length (in `2-norm) of the shortest
non-zero lattice vector in L. Symbolically,

λ1(L) := min
~w∈L\{~0}

‖~w‖2.

• We call a vector ~v ∈ L a shortest vector in L iff ~v 6= ~0 and ‖~v‖2 = λ1(L). In
other words, ~v is a shortest vector iff it is an argument that satisfies the above
minimization,

~v = arg min
~w∈L\{~0}

‖~w‖2.

These definitions naturally gives rise to the following computational problem.

The Shortest Vector Problem (SVP)
Input: a basis B of a lattice L.
Output: a shortest vector ~v ∈ L.

Pictorially, the two dimensional SVP is to find the vector label ~v in the image
below, where ~b1 and ~b2 are the inputted basis vectors.

9It is of course interesting to study short non-zero vectors with respect to other norms. See, for
example, Huck Bennett’s survey here, where this is discussed.

190

https://dl.acm.org/doi/10.1145/3586165.3586172

Question 21.2. In general, are the coefficients in the linearly combination of ~b1
and ~b2 that equal ~v guaranteed to be small?

Thus, even a brute-force search of the lattice (via some naïve enumeration
algorithm, say), is, at least intuitively, inefficient.

Now, given SVP, a natural thing to do is to contrive a decision version of SVP, so
that it corresponds to a language. At the same time, it is also possible to define an
“approximate” version of SVP, where instead of finding the shortest vector, all we
require is to find a “short enough” vector. This version of SVP is as follows, where
γ is a computable function like n4 or 2n, and n is the dimension of the lattice.

The γ-Approximate Decisional SVP (γ-GapSVP)
Input: a basis B of a lattice L and r > 0.

Output:
YES if λ1(L) ≤ r

NO if λ1(L) > γr.

Pictorially, two-dimensional γ-GapSVP looks as follows.

Exercise 21.4.

• If γ′ > γ, is γ′-GapSVP easier or harder than γ-GapSVP?

• Is γ-GapSVP ∈ NP? Why or why not?

191

In fact, γ-GapSVP ∈ NP for all choices of γ ≥ 1, but it is unknown if it is ever
NP-complete.10

Now, the reason we’ve introduced these two problems is so that we can state the
following two facts, one of which relates to the power of quantum computers, and
the other of which relates to a classical public-key cryptosystem.

Fact 21.5. An efficient (classical or quantum) algorithm for the non-abelian hidden
subgroup problem implies an efficient (classical or quantum) algorithm for (a version
of) poly-GapSVP.11

In particular, the instance of the hidden subgroup problem (HSP) is over the
dihedral group, which is the group of symmetries of regular polygons. Crucially,
this group is not abelian, which, as we discussed last lecture, is interesting from a
quantum computing point of view because, as far as we know, quantum computers
cannot efficiently solve the non-abelian HSP. Thus, the above result suggests that
quantum computers are equally bad at solving poly-GapSVP and other, related
lattice problems. Given this, it is natural to devise cryptosystems who security
guarantees stem from lattice problems, as this will plausibly make them quantum-
secure. Along these lines, Oded Regev (along with many others) have proposed
cryptosystems that do just this, and along the way establish theorems like the
following.

Fact 21.6. Breaking many lattice-based cryptosystems (e.g., Regev encryption) is
as hard as the worst case instance of poly-GapSVP. Therefore, it is plausible that
these cryptosystems are quantum-secure.

Hence, unlike the RSA and ElGamel cryptosystems, lattice-based cryptosystems
do not get their security guarantees from abelian HSP-like problems, but, at least
roughly speaking, from non-abelian HSP-like problems. This gives some evidence
that in a post-quantum world, classical, lattice-based cryptosystems will be quantum-
secure. Currently, this seems to be the most likely future, as the National Institute
of Standards and Technology (NIST) has started to standardize some of these
lattice-based protocols.

10That said, it is known to be NP-hard under so-called “randomized reductions”.
11In particular, the version is called the unique SVP, which we will not discuss here as we have

already ventured deep into a lattice rabbit hole. Nevertheless, if you are interested, this paper
by Curtis Bright proves this reduction in full.

192

https://cs.curtisbright.com/reports/cs667proj.pdf

Lecture 22
Hamiltonian Simulation

Discussion 22.1. Discuss with your group what you took away from last time.

Last lecture, we discussed quantum and post-quantum cryptography. This
discussion was motivated by the fact that Shor’s algorithms for factoring and discrete
log threaten current cryptosystems, such as the RSA cryptosystem. Therefore, it is
both natural and important to consider new cryptosystems that are secure against
quantum adversaries.

In this lecture, we will consider problems beyond factoring and discrete log (and
other hidden subgroup problems) that quantum computers can solve efficiently. In
particular, we will consider the problem of Hamiltonian simulation, which is just a
fancy way of saying the problem of simulating quantum systems. Indeed, as you
may recall from Lecture 1, this was Richard Feynman’s original idea for what a
quantum computer would be good for.1

22.1. Matrix Exponentials

Like the other lectures in this course, we will require some new mathematics to
formally introduce the notion of a “Hamiltonian”, and also to see how Hamiltonians
relate to the unitary evolution of quantum systems that we are accustom to.2 As we
will see, the main mathematical workhorse of this lecture is the matrix exponential.

Definition 22.1. Let A be an N ×N complex-valued matrix. The matrix expo-
nential of A is the N ×N complex-valued matrix

eA :=
∑
k≥0

Ak

k! ,

1I recommend reading his seminal paper Simulating Physics with Computers, available here.
2Note, the term “Hamiltonian” is named after the 19th century physicist and mathematician
William Hamilton, not the United States founding father Alexander Hamilton.

193

https://link.springer.com/article/10.1007/BF02650179

where A0 := IN .

Here, the definition stems from the Taylor series for ex,

ex =
∑
k≥0

xk

k! ,

which is defined for all real x. Of course, in the case of the matrix exponential, it is
not obvious that the series converges, but, in fact, it does for any square matrix A.3

Example 22.1. Let
C = X =

(
0 1
1 0

)
.

Evidently,
C2 =

(
1 0
0 1

)
= I2,

which implies that for all k ≥ 0, C2k = I2 and C2k+1 = C. Consequently,4

eC =
∑
k≥0

1
k!C

k

=
∑
k≥0

1
(2k)!C

2k +
∑
k≥0

1
(2k + 1)!C

2k+1

= I2
∑
k≥0

1
(2k)! + C

∑
k≥0

1
(2k + 1)!

= I2

(
e+ e−1

2

)
+ C

(
e− e−1

2

)

= 1
2

(
e+ e−1 e− e−1

e− e−1 e+ e−1

)
.

Exercise 22.1. Let

A =
(

0 1
0 0

)
and B =

(
0 0
1 0

)
.

3This follows from the observation that ‖Ak‖op ≤ ‖A‖kop for all k ≥ 0, from which it follows that
eA is a bounded operator, as the previous inequality implies ‖eA‖op ≤ e‖A‖op .

4Using the hyperbolic trigonometric functions cosh(x) = (ex+e−x)/2 and sinh(x) = (ex−e−x)/2,
we can equivalently write eC as

eC =
(

cosh(1) sinh(1)
sinh(1) cosh(1)

)
.

194

Prove that
eA =

(
1 1
0 1

)
and eB =

(
1 0
1 1

)
.

Now consider the following question.

Question 22.1. Given N ×N complex-valued matrices A and B, is eAeB = eA+B?

Nevertheless, there are several facts that are useful for approximating the matrix
C such that eAeB = eC .5

Fact 22.1. If A and B are N ×N complex-valued matrices that commute (meaning
their commutator [A,B] := AB −BA = 0), then eAeB = eA+B.

More generally, regardless of the value of [A,B], we have the following fact, which
can be found in any standard text on Lie theory.

Fact 22.2 (Lie Product Formula). If A and B are N ×N complex-valued matrices,
then

eA+B = lim
m→∞

(
eA/meB/m

)m
.

More generally, if A1, . . . , An are N ×N complex-valued matrices, then

eA1+···+An = lim
m→∞

(
eA1/m · · · eAn/m

)m
.

These identities will help in simulating certain compositions of quantum systems,
as we will shortly discuss. First, however, we need to understand why matrix
exponentials are even relevant in the context of quantum mechanics.

22.2. The Differential Form of Schrödinger’s Equation

In physics, we are generally interested in how the state of a physical system (a
block on a frictionless table, an electron in a magnetic field, a spaceship near a
Schwarzschild black hole, etc.) evolves in time. In physics, then, we seek a means
to describe how the state of a system is changing at any given time, so that, given
some initial condition, we can use calculus to figure out the state at any other time.
Indeed, this is precisely the content of Newton’s second law, F = ma, which is a

5Although we will not explicitly use it here, among the most important results along these lines
is the Baker–Cambell–Hausdorff (BCH) Formula, which gives an explicit formula for C in
terms of the commutator of A and B, at least for “small” A and B. I recommend Brian Hall’s
book Lie Groups, Lie Algebras, and Representations if you are interested in this stuff.

195

second-order differential equation that, for any time t, can be integrated to solve
for the velocity and position of a particle experiencing the force F .

Given the way we introduced quantum mechanics, however, we do not know how
to do this. In particular, all we know is that, absent any measurements, if the state
of a quantum system is |ψ(t1)〉 at time t1, and if the state at some other time t2 6= t1
is |ψ(t2)〉, then there must exist a unitary transformation U that relates them:

|ψ(t2)〉 = U |ψ(t1)〉.

This, however, tells us nothing about the rate of change of |ψ(t)〉 with respect to t,
nor does it tell us anything about what the unitary U is (and how, for example, it
depends on t1 and t2, which it certainly must). Of course, at least up to now, this
has not been a problem. In the context of quantum mechanics, and in particular
of simulating quantum mechanics, however, these extra pieces of information are
crucial. To mend this, we will now introduce the differential form of Schrödinger’s
equation, which is really the Schrödinger equation that Erwin Schrödinger originally
postulated.

Postulate 22.1. Let S be a quantum system with Hilbert space CN , and let |ψ(t)〉
be the state of S at time t. Absent any measurements of the system, there exists a
(possibly time-dependent) N ×N hermitian operator H(t) called a Hamiltonian
operator (or just Hamiltonian for short) such that6

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉.

This is called the time-dependent Schrödinger equation.

Intuitively, this equation says that the Hamiltonian generates time evolution.
In other words, changes in the state in time (the left hand side) are generated by
the action of the Hamiltonian on the state (the right hand side). Below are two
examples of Hamiltonians that appear in nature.

Example 22.2.

• Consider a particle of mass m moving in three dimensional space in a potential
V (~x, t). Then,

H = H(~x, t) = − 1
2m∇

2 + V (~x, t)

6The physicist reading this might be concerned that I forgot ~, the reduced Plank constant, on
the left side. Not at all. WLOG, we can assume we are working with units in which ~ = 1.

196

Note that in this case, the Hamiltonian depends on the position ~x of the particle
(in fact, the position operator), so Schrödinger’s equation becomes a first-order
partial differential equation. Note also that in this case, H is an infinite
dimensional operator (as∇ is an infinite dimensional operator, as is the position
operator), which complicates the operator analysis (though physics students
are undoubtedly familiar with this). That said, an appropriate discretization
of space and time makes this Hamiltonian amenable to computational analysis.

• Suppose there is magnetic field along the z-axis that is incident on n qubits
in a circle that are exhibiting nearest-neighbor interactions. This physical
situation underlies the so-called quantum Heisenberg model, which is related
to the famous Ising model. The Hamiltonian for this system is

HQHM = −1
2
∑
j∈Zn

(JxXjXj+1 + JyYjYj+1 + JzZjZj+1 + hZj) .

Here, h, Jx, Jy, and Jz are constants that specify the field strength and the
nearest-neighbor interactions, and Xj is shorthand for the n-fold tensor product

Xj = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
j−1 times

⊗X ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−j times

(and similarly for Yj and Zj). Also note that here the sums in the indices
of the terms in HQHM are all modulo n. This is because we are supposing
that the n qubits lie in a circle. (In physics, we would say that the quantum
Heisenberg model has periodic boundary conditions.) Note that in this case,
the Hamiltonian is independent of time.

To relate all of this to the unitary evolution of quantum states, note that given
an initial condition, i.e., the quantum state |ψ(t1)〉 at some time t1, we can simply
integrate Schrödinger’s equation to find the quantum state |ψ(t2)〉 at a different
(though not necessarily later) time t2 6= t1. The upshot of this is the following fact.

Fact 22.3. Let S be a quantum system with Hilbert space CN , let |ψ(t)〉 be the state
of S at time t, and suppose |ψ(t1)〉 is known for some initial time t1. Additionally,
for all time t, define

U(t1, t) := exp
(
−i

∫ t

t1
H(s) ds

)
.

Then,

197

(i) U(t1, t) ∈ U(N),

(ii) and |ψ(t)〉 = U(t1, t)|ψ(t1)〉.

Therefore, by integrating the differential form of Schrödinger’s equation, we
recover the unitary evolution postulate of quantum mechanics that we are so
accustom to. In particular, setting t = t2, we find that

|ψ(t2)〉 = U(t1, t2)|ψ(t1)〉.

What’s more, however, is that this form tells us the exact unitary that relates two
quantum states at two different times, and we see how that unitary depends on the
time parameters.

Philosophically, this is quite interesting, because the preceding fact shows that
the Schrödinger equation is deterministic, meaning that as long as we have some
initial data (such as the state of the system at some time and the Hamiltonian
of the system), then we can deduce, on pain of irrationality, the state at all
later times. Of course, this assumes no measurements are occurring (whatever a
“measurement” is), but nonetheless if you think that measurements are a figment
of our misunderstanding of quantum mechanics (such as in the Many-Worlds
interpretation), then it follows that quantum mechanics is a completely deterministic
theory, despite being probabilistic in nature!

Now, getting back to the matter at hand, suppose that the Hamiltonian is
independent of time. In this case, it is a straightforward consequence of Fact 22.3
that for all times t1 and t2,

U(t1, t2) = e−iH(t2−t1).

This is the form of the unitary that we will assume in the next section, as it underlies
many interesting physical systems (e.g., electrons in a constant magnetic field).
Of course, in the context of quantum computing, it is very interesting to consider
time-dependent Hamiltonians, as this underlies a model of quantum computation
called adiabatic quantum computing, which I encourage you to read about.

Note, given the above expression for the unitary evolution induced by a time-
independent HamiltonianH, it evidently suffices to approximate the unitary U(t1, t2)
in the operator norm for all times t1 and t2 to simulate the evolution induced by
H. Indeed, this is exactly how one simulates a quantum system on a quantum
computer, as we will now discuss.

198

22.3. Simulating Quantum Mechanics with a Quantum Computer

Given the above discussion, we see that to simulate a quantum system, it suffices
to simulate the unitary generated by its Hamiltonian à la Fact 22.3. Formally, the
definition of simulating a quantum system on a quantum computer is as follows.

Definition 22.2. Let S be an n-qubit quantum system with Hamiltonian H. We
say S can be efficiently simulated on a quantum computer iff there exists a P-uniform
family of n-qubit quantum circuits Q = {Q` : ` ∈ N} over a universal gate set G
and a function f : R× R→ N such that for all t > 0 and all ε > 0:

(i) f(t, ε) is computable in polynomial time on a deterministic Turing machine,

(ii) the size of Qf(t,ε) is O(poly(n, t, ε−1)),

(iii) and ‖Qf(t,ε) − e−iHt‖op < ε.

Here, we require the family to consist solely of n-qubit circuits because e−iHt
is an n-qubit unitary for all time t. Additionally, condition (i) is an additional
uniformity constraint that enforces the generation of a given circuit is efficient with
respect to the time and precision parameters, and (ii) is a natural requirement for
the quantum computer to be efficient, and for the quantum computer to “know” the
precision ε we seek in the approximation. (You should compare and contrast this
definition with the definition of an efficient quantum computer, which we saw many
lectures ago.) Finally, condition (iii) is the sense in which the circuit is actually
simulating the Hamiltonian H, as it emulates the unitary operation (at time t) that
H implements to within error ε in operator norm.

For the rest of this section, we will explore a handful of cases when quantum
systems can be efficiently simulated, contingent on some other quantum system
being efficiently simulable.

Exercise 22.2. Let S be an n-qubit quantum system with Hamiltonian H, and
suppose S can be efficiently simulated on a quantum computer. Argue that for all
polynomials p, the n-qubit quantum system S′ with Hamiltonian p(n)H can also be
efficiently simulated on a quantum computer.

In words, this exercise shows that by re-parameterizing time by some polynomial
factor, the efficiency of the simulation does not change. We will now consider a
slightly more interesting type of simulation.

199

Claim 22.4. Let S be an n-qubit quantum system with Hamiltonian H, and let
U ∈ U(2n). If S can be efficiently simulated on a quantum computer, then so can
the n-qubit system S′ with Hamiltonian UHU †.

Proof. This follows from the fact that for any unitary U ∈ U(N) and any N ×N
complex-valued matrix A,7

eUAU
†

= UeAU †.

Thus, to simulate e−iUHU†t, it suffices to simulate U , U †, and e−iHt. By assumption
we can simulate e−iHt, and by the fact that we have access to a universal gate
set G, we can simulate U to within error ε′ using O(poly(log 1/ε′)) gates by the
Solovay-Kitaev theorem. Therefore, we can efficiently simulate the quantum system
S′ with Hamiltonian e−iUHU†t on a quantum computer. �

Among the many physical configurations one might consider, perhaps the most
natural is to take two quantum systems and put them together. Intuitively, one
expects if both systems are independently simulable, then the combined system
should be as well, assuming, of course, that they don’t interact in a significant way.
Indeed, this turns out to be true.

Claim 22.5. Let S1 and S2 be n-qubit quantum systems with Hamiltonians H1
and H2, respectively. If both S1 and S2 can be efficiently simulated on a quantum
computer, then so can the composite system S1 + S2 with Hamiltonian H1 +H2.

Proof Idea. The key to this proof is the Lie product formula from Fact 22.2, which,
in the case of Hamiltonian simulation, implies that

e−i(H1+H2)t = lim
m→∞

(
e−iH1t/me−iH2t/m

)m
.

Taking m = O(poly(n, t, ε−1)) gives the polynomially-sized product approximation
(called a Trotterization)

e−i(H1+H2)t ≈
(
e−H1t/me−H2t/m

)
· · ·

(
e−H1t/me−H2t/m

)
︸ ︷︷ ︸

m product pairs

.

In this case, since each unitary e−H1t/m and e−H2t/m can be simulated efficiently on
a quantum computer (see Example 22.2), the whole product can also be simulated
efficiently on a quantum computer.8 �

7It is a good exercise to prove this identity.
8For details on the error analysis and other approximations, see these notes by Andrew Childs.

200

https://www.cs.umd.edu/~amchilds/qa/qa.pdf

A more general statement holds for the composition of many quantum systems.

Fact 22.6. Let S1, . . . , Sk be n-qubit quantum systems with Hamiltonians H1, . . . , Hk,
respectively. If S1, . . . , Sk can all be efficiently simulated on a quantum computer,
then so can the composite system S1 + · · ·+ Sk with Hamiltonian H1 + · · ·+Hk.

The proof of this fact is the same as the two system case, with the exception that
one must use the generalized Lie product formula in Fact 22.2.

Another interesting fact is the following, which relates the simulability of two
systems with Hamiltonians H1 and H2 to the simulability of the system whose
Hamiltonian is essentially the commutator of H1 and H2.

Claim 22.7. Let S1 and S2 be n-qubit quantum systems with Hamiltonians H1
and H2, respectively. If both S1 and S2 can be efficiently simulated on a quantum
computer, then the system S′ with Hamiltonian i[HA, HB] can be efficiently simulated
on a quantum computer.

Proof Idea. The key to this proof is to use a version of the Lie product formula
that holds for the commutator. In particular, it is a fact that

e[H1,H2]t = lim
m→∞

(
e−iH1

√
t/me−iH2

√
t/meiH1

√
t/meiH2

√
t/m

)m
.

While we will not prove this identity (since, like the Lie product formula, it requires
group theory beyond the scope of this course), the idea of simulating S′ is then
the same as in the previous claims: for m = O(poly(n, t, ε−1)), we get a good
approximation of e[H1,H2]t in terms of e−iH1

√
t/m and e−iH2

√
t/m, each of which can

be efficiently simulated. �

Finally, we give what is one of the more important facts when it comes to
simulating quantum systems with quantum computers. As we will see in the next
section, this fact is also important for quantum algorithms that solve certain linear
algebraic problems, such as finding the maximum eigenvalue of a Hermitian matrix.

Claim 22.8. Let S be an n-qubit quantum system with a Hamiltonian H that
contains at most O(poly(log n)) many non-zero entries (when expressed in the
computational basis).9 Suppose, further, that for all x ∈ Zn, there is an efficient
classical computer that outputs every y ∈ Zn for which 〈y|H|x〉 6= 0 and, moreover,
outputs the value of 〈y|H|x〉 for each such y (in this case, H is called efficiently
row computable). Then, S can be efficiently simulated on a quantum computer.

9Such a Hamiltonian is called sparse.

201

Proof Idea. If H is sparse, then it turns out that H can be decomposed into a
sum of just ` = O(poly(log n))-many Hamiltonians H1, H2, . . . , H` that mutually
commute. By Fact 22.1, it follows that

e−iHt = e−i(H1+···+H`)t

= e−iH1t · · · e−iH`t.

One can then show that each of these exponentials can be well-approximated on the
quantum computer, which then implies that the overall product can be too.10 �

22.4. Matrix Encodings*

In the last section, we stated several simulation results in the context of simulating
a quantum system with a particular Hamiltonian H. One can, however, give this
a more computational interpretation and just recognize that, independent of the
quantum system that the Hamiltonian H represents, at the end of the day H is
just a Hermitian matrix, and it is natural to ask questions about that Hermitian
matrix. For example, given a Hermitian matrix H, what is its smallest or largest
eigenvalue? Or, given H and a vector ~b, find ~x such that H~x = ~b. Indeed, the
previous discussion allows us to solve such linear algebraic questions as well, thanks
to an idea called matrix encoding.
Definition 22.3. Let H be a Hermitian matrix. The matrix encoding of H into a
unitary operator is the matrix exponential e−iHt, where t is a parameter.

Of course, nothing has changed from the previous discussion, except our inter-
pretation of what H represents. In particular, here we do not think of H as the
Hamiltonian of some quantum system, but just as some matrix whose properties
we want to investigate. What matrix encoding allows us to do is to represent the
Hermitian matrix H in a quantum-interpretable way.

Given the discussion so far, you may think that requiring H to be a Hermitian
matrix is rather stringent. In fact, however, it is not, as any square matrix admits
a Hermitian form.
Exercise 22.3. Let A be an N ×N complex-valued matrix. Prove that the matrix

HA =
(

0 A
A† 0

)

is Hermitian. Conclude that e−iHAt is unitary.
10See Andrew Childs’ notes here for the full proof.

202

https://www.cs.umd.edu/~amchilds/qa/qa.pdf

This is the generic trick that one must first employ in order for the following two
facts to hold for general complex-valued matrices.
Fact 22.9 (Nghiem–Wei Algorithm). Let A be an N ×N , complex-valued, sparse
matrix. Then, there exists a quantum algorithm that finds the largest eigenvalue of
A (in magnitude) to within error ε in time O(

√
N logN/ε4). In particular cases,

this can be reduced to just O(logN/ε4).
Since the largest eigenvalue of A−1 is the reciprocal of the smallest eigenvalue

of A, it follows that the above algorithm can also find the smallest eigenvalue of
A (provided you know A−1). In addition, the above algorithm is remarkable in
that in certain cases, it need not read every entry of A. Thus, the above algorithm
can offer an exponential speedup to finding the largest or smallest eigenvalue of
a matrix A.11 We note that this also has applications in quantum mechanics, in
which often one is interested in finding the smallest eigenvalue of a Hamiltonian,
which corresponds to the lowest energy state of the quantum system.

Another interesting quantum algorithm pertains to the linear algebraic problem
of solving a system of linear equations. This is obviously important for a myriad of
tasks, but in particular it is important for many machine learning tasks.
Fact 22.10 (Harrow–Hassidim–Lloyd (HHL) Algorithm). Let A be an N × N

complex-valued matrix and let ~b ∈ RN be a unit vector for which there exists a unit
vector ~x ∈ RN such that A~x = ~b. Supposing that |~b〉 can be realized efficiently and
that A is sparse and efficiently row computable, there is a quantum algorithm that
runs in time O(logN/ε) that computes 〈~x|A|~x〉 to within error ε.

Of course, this doesn’t find the vector ~x, but in many applications the matrix
element 〈~x|A|~x〉 is all that matters. Indeed, a myriad of other quantum algorithms
utilize the HHL algorithm as a subroutine (or a modification thereof), including the
Nghiem–Wei algorithm from before, but also quantum algorithms for differential
equation solving, least-squares fitting, and quantum chemistry. As with other
topics in this course, Hamiltonian simulation and matrix encodings constitute a
vast subfield of quantum computation, which you are encouraged to read about on
your own time if it interests you.

22.5. BQP-Completeness*

To return to Feynman’s original idea that quantum computers ought to be good
at simulating quantum dynamics, here we will sketch how simulating certain
11For more details, the reader is referred to Nghiem and Wei’s paper here.

203

https://arxiv.org/abs/2211.06179

Hamiltonians (and thus how simulating certain quantum systems) relates to the
complexity class BQP, which, you’ll recall, is the set of decision problems that can
be decided on an efficient quantum computer.

Interestingly, it turns out that simulating certain Hamiltonians is BQP-complete.
This implies that such Hamiltonian simulation problems are the hardest problem
in BQP, and thus that BPP = BQP if and only if classical computers can simulate
quantum systems just as well as quantum computers can.12 Note that this is in
the same spirit of NP-complete problems, which constitute the hardest problems in
NP (e.g., 3-SAT), and which are such that P = NP if and only if polynomial time,
deterministic, classical computers can solve them. In the case of justifying that
certain instances of Hamiltonian simulation are BQP-complete, one must show two
things.

First, one must show that every unitary evolution is an example of Hamiltonian
simulation. Feynman was the first to show this formally, and we will not go through
the details. Intuitively, however, this makes sense in the context of Stone’s Theorem,
which says that for all one-parameter families of unitaries U(t) that obey reasonable
constraints, there exists a (unique!) Hermitian matrix H such that U(t) = e−iHt for
all times t. Thus, since every language L ∈ BQP is decided by a sequence of unitary
operators, every such unitary can be represented as a Hamiltonian simulation. Thus,
at least intuitively speaking, it is plain that the generic problem of Hamiltonian
simulation is BQP-hard, i.e., that Hamiltonian simulation is at least as hard as
every problem in BQP.

Second, one must show that certain instances of Hamiltonian simulation that
are BQP-hard are also in BQP. Indeed, this turns out to be true (see, for example,
the problem of simulating local Hamiltonians, which is in BQP and which is the
Hamiltonian simulation problem with just local interactions of the underlying
quantum systems).

Together, these results demonstrate that certain instances of Hamiltonian simula-
tion are BQP-complete, and thus represent the hardest problems in BQP. In other
words, Feynman’s intuition is proved right: the problem of simulating quantum
systems is the problem that quantum computers are good at. If you want to read
more about this, I recommend Nielsen and Chuang’s textbook, as well as John
Preskill’s lecture notes, which are available online.

12Unfortunately, this is not quite right. Since BQP is a so-called semantic complexity class, it is
actually not known to have complete problems. The exact class we are talking about, therefore,
is a BQP-like class called PromiseBQP that does have complete problems (and is an example
of a syntactic complexity class).

204

Lecture 23
Post-Selection and Quantum Advantage

Discussion 23.1. Discuss with your group what you took away from last time.

Last time, we discussed how quantum computers can simulate quantum systems,
which was Feynman’s original motivation for introducing the notion of a quan-
tum computer. The previous lecture goes beyond the use of quantum computers
for solving hidden subgroup problems, such as factoring and discrete log, and
afforded additional, formal evidence that efficient quantum computers indeed offer
a computational advantage over efficient classical computers.

In this last lecture, we will discuss another type of formal evidence that efficient
quantum computers can outperform all efficient classical computers. The argument
is complexity-theoretic in nature, and it gives rise to a conditional adynaton of
the form “if quantum computers do not afford a particular type of computational
advantage, then pigs can fly”.

23.1. Relativized Complexity Classes

To begin, recall the basis of the oracle complexity paradigm, which we introduced
in the lecture on Grover’s algorithm. In this paradigm, it is assumed that one
has access to a subroutine that computes some difficult problem in just a single
computational step. Given this, it is natural to consider the complexity class that
corresponds to P, but when the underlying determinitic, polynomial time machine
has access to a potentially powerful oracle. Such classes are called relativized
complexity classes, and we will now define a particularly important example.

Definition 23.1.

• Let L ⊆ {0, 1}∗ be a language. The complexity class PL consists of all languages
L′ ⊆ {0, 1}∗ for which there is a deterministic, polynomial time Turing machine

205

M with oracle access to the indicator function of L, namely the function

χL : {0, 1}∗ → {0, 1}

: x 7→
1 if x ∈ L

0 if x 6∈ L,

such that for all x ∈ {0, 1}∗, M(x) = χL′(x).

• Let C be a complexity class. The complexity class PC is the union of the classes
PL over all L ∈ C, i.e.,

PC :=
⋃
L∈C

PL.

Therefore, L′ ∈ PC iff there exists L ∈ C such that L′ ∈ PL.

As stated in the introduction of this section, this is how we formally talk about
the problems that can be decided by computational devices with access to an oracle.

Exercise 23.1.

1. Argue that if L ∈ P, then PL = P.

2. Argue that PP = P.1

3. Is NP ⊆ PNP?

4. Is PNP ⊆ NP?

In fact, this last question is an open question in computational complexity theory.

23.2. The Polynomial Hierarchy

We will now introduce the main complexity class that underlies the “pigs can fly”
part of the quantum advantage argument we will soon give. As we will see, this
class, which is called the the polynomial hierarchy and is denoted by PH, is defined
in such a way that it naturally generalizes the famous P versus NP question.

1As an aside, the fact that PP = P is related to Scott Aaronson and Dave Bacon’s definition of a
“physical” complexity class. Their idea is that any complexity class that is “physical”, or rather
that captures “physically realistic problems”, “must have a sensible notion of subroutines and
recursion, and that hooking up a machine in your class to a subroutine also in the class must
not give you a new, more powerful class.” This quote is from Aaronson’s blog here.

206

https://scottaaronson.blog/?p=2070

Definition 23.2.

• For all k ∈ N, the class ΣkP consists of the languages L ⊆ {0, 1}∗ for which there
exists a deterministic, polynomial time Turing machine M and polynomials
p1, p2, . . . , pk such that for all x ∈ {0, 1}∗, x ∈ L iff2(
∃y1 ∈ {0, 1}p1(|x|)

) (
∀y2 ∈ {0, 1}p2(|x|)

)
. . .

(
Qkyk ∈ {0, 1}pk(|x|)

)
M(x, y1, . . . , yk) = 1,

where

Qk =
∃ if k is odd
∀ if k is even.

• The polynomial hierarchy is then the class

PH :=
⋃
k≥0

ΣkP.

The polynomial hierarchy is an important complexity class that deserves several
lectures dedicated to it. Of course, we will not have time to do that here, so the
reader is instead referred to any standard text on computational complexity theory
to learn more about it.3 That said, one useful way of thinking about it is in the
context of games. In this setting, languages in ΣkP correspond to two-player games
for which there is a winning strategy in k/2 rounds for the first player. To see this,
we interpret the quantifiers by asking whether there exists a move y1 for player one
such that no matter what move y2 player two makes, there exists a move y3 for
player one, and so on for k/2 rounds, such that player one wins.4

We now present a handful of important facts about the polynomial hierarchy,
which demonstrate its relationship to P and NP.
Exercise 23.2. Prove that Σ0P = P, where Σ0P is ΣkP but with no quantifiers.

Therefore, P ⊆ PH. Importantly, NP ⊆ PH as well.
Claim 23.1. Σ1P = NP. Therefore, NP ⊆ PH.

Proof*. By definition, L ∈ Σ1P iff there exists a deterministic, polynomial time
Turing machine M and a polynomial p such that for all x ∈ {0, 1}∗,

x ∈ L ⇐⇒
(
∃y ∈ {0, 1}p(|x|)

)
M(x, y) = 1.

This is precisely the definition of NP. Therefore, NP = Σ1P ⊆ PH, as desired. �
2Some people denote ΣkP with P in the exponent, namely, as ΣP

k . However, I find this confusing,
especially given our preceding discussion about relativized complexity classes.

3See, for example, Arora and Barak’s textbook Computational Complexity: A Modern Approach.
4There is an analogous class called ΠkP in which player two wins in this interpretation.

207

An immediate corollary of the above two results is that the P versus NP question
is equivalent to a particular statement about the ΣkP classes that define PH.

Corollary 23.2. Σ0P = Σ1P iff P = NP.

Of course, this only concerns ΣkP for k ∈ {0, 1}. One can therefore generalize
the P versus NP problem by considering larger values of k.

Open Problem 23.3 (Generalization of P versus NP). Does there exist k 6= ` for
which ΣkP = Σ`P?

Interestingly, if this is true, then the polynomial hierarchy “collapses” to a
considerably smaller class.

Fact 23.4 (Polynomial Hierarchy Collapse). Let k < `. Then, ΣkP = Σ`P iff
PH = ΣkP, i.e., iff the polynomial hierarchy collapses to its kth level.5

Most in the computer science community regard the collapse of the polynomial
hierarchy to be extremely unlikely, tantamount (though not necessarily as strong)
as the statement that P = NP (which itself collapses the polynomial hierarchy to the
first level). Instead, most think that ΣkP (PH for all k ∈ N, which is to say that
most think that the polynomial hierarchy is infinite. For this reason, if we could
prove a mathematical statement of the form “if efficient classical computers can
simulate efficient quantum computers, then the polynomial hierarchy collapses”, we
would obtain considerably strong evidence that, in fact, efficient classical computers
cannot simulate efficient quantum computers, because there is considerably strong
evidence that the polynomial hierarchy does not collapse. Of course, this is the goal
of this lecture, but to do this properly requires a few more definitions and results.

23.3. Post-Selection and Post-Selected Complexity Classes

In this section, we will introduce two new complexity classes, which correspond to
non-realistic versions of BPP and BQP, but which turn out to be quite interesting
from a complexity theory point of view. In particular, both of these classes employ
the non-physical ability to post-select, which is roughly the ability to force extremely
unlikely events and to then condition on them happening. For example, the following

5For those who like pertinent, nerdy humor, you’ll enjoy this essay by Scott Aaronson. Also, if
you’d like to see a proof of this claim, then see Arora and Barak’s textbook Computational
Complexity: A Modern Approach.

208

https://www.scottaaronson.com/writings/phcollapse.pdf

map is a post-selection map on a qubit state:
1√

21000
|0〉+

√
1− 1

21000 |1〉 7→ |0〉.

In words, here post-selection allows us to change the state to any state with a non-
zero amplitude in just a single step, no matter how unlikely the post-selected state
is. Of course, such an evolution is not unitary, which is why this is not realistic.6
Nevertheless, as we will shortly see, this “magical power” is very interesting from
a theoretical point of view. We will now define both the classical and quantum
classes that correspond to “efficient computers that can post-select”.
Definition 23.3.

• The class PostBPP (a.k.a. BPPpath) consists of the languages L for which
there is an efficient probabilistic classical computer (C,B, s) such that for all
x ∈ {0, 1}∗,
(i) the probability that the second bit outputted by (C,B, s) is 0 is non-zero,

i.e.,
Pr [C(x)1 = 0] > 0,

(ii) and, conditioned on the second bit outputted by (C,B, s) equalling 0, the
probability that the first bit outputted by (C,B, s) is χL(x) is at least
1/2 + δ for some fixed δ ∈ (0, 1/2], i.e.,

Pr [C(x)0 = χL(x) | C(x)1 = 0] ≥ 1
2 + δ.

• Similarly, the class PostBQP consists of the languages L for which there is an
efficient quantum computer (Q,G, a) over a universal gate set G such that for
all x ∈ {0, 1}∗,7

(i) the probability that the second qubit outputted by (Q,G, a) is |0〉 is
non-zero, i.e.,

Pr [Q(x)1 = |0〉] > 0,

(ii) and, conditioned on the second qubit outputted by (Q,G, a) equalling |0〉,
the probability that the first qubit outputted by (Q,G, a) is |χL(x)〉 is at
least 1/2 + δ for some fixed δ ∈ (0, 1/2], i.e.,

Pr [Q(x)0 = |χL(x)〉 | Q(x)1 = |0〉] ≥ 1
2 + δ.

6For more on this, I will plug my paper here.
7The fact that G is universal makes this class independent of the underlying gate set, in the same
way that BQP over a universal gate set is actually independent of the underlying gate set.

209

https://arxiv.org/abs/2411.02369

It is easy to reason that BPP ⊆ PostBPP, that BQP ⊆ PostBQP, and that
PostBPP ⊆ PostBQP. However, it is unknown how, for example, BQP and PostBPP
relate, and how PostBPP and PostBQP relate. That said, there are several results
that inform this last question, which relate to the polynomial hierarchy. The
following two theorems give some idea of the power of these post-selected classes.

Theorem 23.5 (Aaronson–Toda). PH ⊆ PPostBQP.8

Theorem 23.6 (Han–Hemaspaandra–Thierauf). PPostBPP ⊆ Σ3P.9

Altogether, it seems that PostBQP is considerably more powerful than PostBPP,
because the whole polynomial hierarchy is contained in the class PPostBQP, but not
PPostBPP, unless the polynomial hierarchy collapses. The formal statement of this is
as follows.

Corollary 23.7. If PostBPP = PostBQP, then PH ⊆ Σ3P, i.e., the polynomial
hierarchy collapses to its third level.

Proof. If PostBPP = PostBQP, then

PH ⊆ PPostBQP (Theorem 23.5)
= PPostBPP (assumption)
⊆ Σ3P (Theorem 23.6).

In other words, if PostBPP = PostBQP, then the polynomial hierarchy collapses to
its third level. �

Since the collapse of the polynomial hierarchy to any level is unlikely, this gives
strong evidence that PostBPP 6= PostBQP. In the next section, we will exploit the
above result to show that efficient classical computers cannot simulate efficient
quantum computers in a particular sense unless the polynomial hierarchy collapses.

23.4. Weak Multiplicative Simulations and PH Collapse

In general, one says that “efficient quantum computers afford a quantum advantage
iff there exists a computational task that no efficient classical computer can do.”

8Here we have combined two independent results. Toda proved that PH ⊆ PPP, where PP is a
BPP-like class that you should look up, and Aaronson proved that PP = PostBQP. Together,
therefore, their results imply PH ⊆ PPostBQP, as stated.

9Here we have also combined two independent results. Han, Hemaspaandra, and Thierauf proved
that PostBPP ⊆ PΣ2P, and it is a relatively straightforward exercise to show that PPΣ2P ⊆ Σ3P.
Together, therefore, these results imply PPostBPP ⊆ Σ3P, as stated.

210

In this section, we will explore one particular type of computational task (called a
weak multiplicative simulation) that does indeed offer a computational advantage.
That said, what we discuss here by no means proves, for example, that BPP 6= BQP,
or anything morally equivalent. Nevertheless, what we do get is additional formal
evidence that efficient quantum computers are strictly more powerful than efficient
classical computers.

Definition 23.4. Let ε ≥ 0, let (Q,G, a) be an efficient quantum computer, and let
(C,B, s) be an efficient classical computer. We say that (C,B, s) weakly10 simulates
(Q,G, a) to within multiplicative error ε iff for all x ∈ {0, 1}∗ and all strings y in
the output of Q on inputs of size |x|,

1
1 + ε

Pr [Q(x) = |y〉] ≤ Pr [C(x) = y] ≤ (1 + ε) Pr [Q(x) = |y〉] .

Since for small ε ≥ 0, 1/(1 + ε) ≈ 1− ε, an efficient classical computer weakly
simulates an efficient quantum computer to within multiplicative error ε iff the
output distribution of the classical computer is within a multiplicative factor of ε
of the output distribution of the quantum computer, i.e.,

|Pr [C(x) = y]− Pr [Q(x) = |y〉]| ≤ εPr [Q(x) = |y〉] .

Right off the bat, we note that this computational task is quite difficult. The
reason is because if the quantum computer has two likely outputs with probability
1/2− 1/2n and two unlikely outputs with probability 1/2n, then insisting that the
classical computer simulates the quantum computer to within small multiplicative
error means that the classical computer must approximate the two unlikely events
essentially just as well as it approximates the two likely events. However, it should
be difficult to actually differentiate between the correct distribution underlying the
quantum computer and the distribution where the two likely events have probability
1/2 each. For this reason, in the next section we mention a different notion of
simulation that is more realistic and is more experimentally viable. Nevertheless,
here we will charge ahead to see that this (rather restrictive) notion of simulation
affords a quantum advantage, assuming that the polynomial hierarchy is infinite.

Claim 23.8. If for all efficient quantum computers (Q,G, a) there exists an efficient
probabilistic classical computer (C,B, s) that weakly simulates (Q,G, a) to within
multiplicative error ε <

√
2− 1 ≈ 0.414, then the polynomial hierarchy collapses to

its third level.
10Here the word “weak” refers to the fact that the classical computer is only required to approxi-

mately sample from the distribution of the quantum computer, not the much stronger notion
of computing the probability that the quantum computer outputs a particular string.

211

Proof*. By assumption, there is an efficient, probabilistic classical computer (C,B, s)
that simulates (Q,G, a) to within multiplicative error ε <

√
2− 1. Therefore, for

all x ∈ {0, 1}∗ and all strings y in the output on inputs of size |x|,

1
1 + ε

Pr[C(x) = y] ≤ Pr[Q(x) = |y〉] ≤ (1 + ε) Pr[C(x) = y].

Given this, let L ∈ PostBQP. Then, by the definition of conditional probability
and the weak multiplicative simulation assumption from above,

Pr[Q(x)0 = |χL(x)〉 | Q(x)1 = |0〉] = Pr [Q(x) = |χL(x)〉|0〉]
Pr
[
Q(x)1 = |0〉

]
≤ (1 + ε) Pr [C(x) = χL(x).0]

Pr
[
C(x)1 = 0

]
/(1 + ε)

= (1 + ε)2 Pr[C(x)0 = χL(x) | C(x)1 = 0],

Since for all x ∈ {0, 1}∗ and any fixed δ ∈ (0, 1/2],

Pr[Q(x)0 = |χL(x)〉 | Q(x)1 = |0〉] ≥ 1
2 + δ,

it holds that

Pr[C(x)0 = χL(x) | C(x)1 = 0] ≥ 1
(1 + ε)2

(1
2 + δ

)
= 1

2 ·
1 + 2δ

(1 + ε)2 .

Consequently, (C,B, s) decides L in the sense of PostBPP provided (1+ ε)2 < 1+2δ.
Since δ can be any value satisfying 0 < δ < 1/2, it suffices for 0 ≤ ε <

√
2− 1 to

ensure L ∈ PostBPP. In this case, it follows that PostBPP = PostBQP, and the
polynomial hierarchy collapses to its third level à la Corollary 23.7. �

23.5. Weak Additive Simulations and PH Collapse*

In the last section, we mentioned that the notion of a weak multiplicative simulation
is rather restrictive, because such a simulation requires distinguishing between
distributions that are exponentially close in total variation distance (e.g., 1/2−1/2n
and 1/2). Additionally, it is known that in the presence of errors, a quantum
computer cannot even weakly simulate itself to within small multiplicative error, so
of course it is a strong restriction to require a classical computer to do something
that no “realistic” quantum computer can do (i.e., a quantum computer with

212

non-zero errors). Because of this, at least from an experimental point of view, a
better notion of simulation is that of a weak additive simulation. In this case, it is
merely required that on the average (as opposed to on every valuation) the classical
computer samples the output distribution of the quantum computer to within some
error ε ≥ 0. We put this more formally as follows.

Definition 23.5. Let ε ≥ 0, let (Q,G, a) be an efficient quantum computer, and let
(C,B, s) be an efficient classical computer. We say that (C,B, s) weakly simulates
(Q,G, a) to within additive error ε iff for all n ∈ N, all x ∈ {0, 1}n, and all strings y
in the output of Q on inputs of size |x| = n,

1
2

∑
x∈{0,1}n

|Pr [Q(x) = |y〉]− Pr [C(x) = y]| ≤ ε.

In other words, (C,B, s) weakly simulates (Q,G, a) to within additive error ε iff
the output distributions of (C,B, s) and (Q,G, a) are within ε in total variation
distance.

For small ε ≥ 0, it is a simple exercise to show that if (C,B, s) weakly simulates
(Q,G, a) to within multiplicative error ε, then (C,B, s) weakly simulates (Q,G, a)
to within additive error 2ε.

Exercise 23.3. Prove this claim.

Indeed, thanks to the so-called Threshold Theorem for Quantum Computation,11
quantum error correction only guarantees correctness up to additive error between
the target and actualized output distributions of an error-corrected quantum
computer. Therefore, unlike multiplicative error, with sufficient error correction,
imperfect quantum computers can weakly simulate themselves to within small
additive error ε. For this reason, a more appropriate type of simulation of quantum
computers by classical computers is the weak additive type. Unfortunately, this
type of simulation does not immediately afford the argument that we saw for weak
multiplicative simulation, in which a “good enough” additive simulation implies
polynomial hierarchy collapse.

That said, there is a general argument to get a statement of the form “if for
all efficient quantum computers there is an efficient classical computer that can
weakly simulate it to within small additive error, then the polynomial hierarchy
collapses,” however, this argument (as far as I know) is always conditional on
additional, unproven statements.
11See, for example, Daniel Gottesman’s book Surviving as a Quantum Computer in a Classical

World, available online here.

213

https://www.cs.umd.edu/class/spring2024/cmsc858G/QECCbook-2024-ch1-15.pdf

The basic idea to get a statement like this to hold is to note that it suffices to
“upgrade” a weak additive simulation to a sufficiently strong weak multiplicative
simulation, so that the weak multiplicative simulation argument from before goes
through. In general, there are two components to such an upgrade.

The first component is anti-concentration. Anti-concentration mends the problem
that in any weak additive simulation, while we are guaranteed that∑

x∈{0,1}n
|Pr [Q(x) = |y〉]− Pr [C(x) = y]| ≤ 2ε,

we have no knowledge of how small any particular difference

|Pr [Q(x) = |y〉]− Pr [C(x) = y]|

is, except, of course, that it must be less than 2ε. In particular, if Pr [Q(x) = |y〉]
is much smaller than ε, then Pr [C(x) = y] is free to be much larger than ε. This is
unlike weak multiplicative simulations, where it is guaranteed that each difference
is small. An anti-concentration bound fixes this difficulty, but almost always at the
expense of an unproven conjecture.

The second component is a sort of worst-to-average case reduction, which is
similar in spirit to the worst-to-average case reductions that we briefly mentioned
in the lecture on quantum and post-quantum cryptography. Here, however, the
idea is that we want our efficient quantum computer to be such that the existence
of any efficient classical computer that can strongly simulate it (i.e., compute the
probabilities that the quantum computer outputs a particular string) implies the
existence of a classical computer that can solve any problem in a complexity class
]P, which is related to the class PP that was mentioned in a footnote above. Again,
showing this generally requires another unproven conjecture.

Nevertheless, it turns out that with these two components, it is possible to
upgrade a weak additive simulation to a weak multiplicative simulation, from which
the preceding argument that the polynomial hierarchy collapses goes through. For
an excellent survey of the details of this technique, I recommend this article by
Hangleiter et al. Interestingly, by employing some new ideas, one can probably
extend this approach to address what is arguably the most important question in
quantum computation, as the following exercise shows.

Exercise 23.4. Using these and new ideas, prove unconditionally that BPP 6= BQP.

Thank you for the great semester!

214

https://arxiv.org/abs/1706.03786

	Foreword
	A Most Incomprehensible Thing
	The Church-Turing-Deutsch Thesis
	Feynman's Vision
	An Experimental Fact of Life
	Another Experimental Fact of Life

	Quantum Mechanics I
	States of Quantum Systems
	Composite Systems

	Quantum Mechanics II
	The Evolution of Quantum Systems
	Application: Quantum Computers
	Observables and Projective Measurements
	Distinguishing Quantum States

	Quantum Mechanics III
	The Evolution of Composite Systems
	Measuring Composite Systems
	One Way of Thinking About This*

	Qubits, Quantum Encodings, and Bell's Theorem
	Bits and Bit Strings
	Basis Encodings
	Qubits and the Bloch Sphere
	Amplitude Encodings*
	Bell's Theorem*

	The Circuit Model of Classical Computation
	Classical Gate Sets and Circuits
	Universal Classical Gate Sets
	The Circuit Model of Classical Computation
	Efficient Deterministic Classical Computers

	Randomized Computation
	Quantum Computers are Probabilistic
	Probabilistic Classical Circuits
	Probabilistic Classical Computers
	Probability Amplification

	Reversible Computation
	Quantum Computers are Reversible
	Reversible Gate Sets and Garbage Bits
	Reversible Circuits
	Uncomputation
	Reversible Classical Computers*
	Landauer's Principle*

	Quantum Gates
	Single-Qubit Gates
	Non-Entangling Multi-Qubit Gates
	Entangling Multi-Qubit Gates

	The Circuit Model of Quantum Computation
	Quantum Circuits
	The Circuit Model of Quantum Computation
	Quantum Uncomputation*

	Universal Gate Sets and Quantum Compilation
	The Operator Norm and Generating Sets
	Universality and the Clifford + T Gate Set
	Quantum Compilation
	Computational Universality*

	Quantum Computational Complexity Theory
	Languages and Decision Problems
	¶, BPP, and Friends
	BQP
	The Limits of BQP

	Grover's Algorithm
	Oracles and the Query Complexity Paradigm
	Unstructured Search
	Grover's Algorithm
	Correctness of Grover's Algorithm
	Generalizations and Quantum Optimality*
	Grover and NP*

	Simon's Algorithm
	An Aside about H
	Simon's Problem
	Simon's Algorithm
	Correctness of Simon's Algorithm

	The Quantum Fourier Transform
	The Quantum Fourier Transform over ZN
	Properties of FZN
	Implementing FZN on a Quantum Computer

	The Quantum Phase Estimation Algorithm
	The Phase Estimation Problem
	The Quantum Phase Estimation Algorithm
	Correctness of QPE: The Exact Case
	Correctness of QPE: The Non-Exact Case*

	The Quantum Period Finding Algorithm
	The Period Finding Problem
	The Quantum Period Finding Algorithm
	Correctness of QPF: The Exact Case
	Correctness of QPF: The Non-Exact Case
	Extracting the Period: The Continued Fractions Algorithm
	QPF is QPE in Disguise*
	A Number Theoretic Digression*

	Shor's Algorithm for Factoring Integers
	The Integer Factorization Problem
	When is Factoring Easy?
	Some Requisite Number Theory
	Shor's Algorithm for Factoring Integers

	Shor's Algorithm for Discrete Logarithms
	Diffie–Hellman Key Exchange
	The Discrete Logarithm Problem
	When is Discrete Log Easy?
	The Discrete Log Problem as Lattice Period Finding
	Shor's Algorithm for the Discrete Log Problem

	The Hidden Subgroup Problem
	Groups, Hiding Functions, and the Hidden Subgroup Problem
	The Many Reductions to AHSP
	An Efficient Quantum Algorithm for AHSP
	The Non-Abelian HSP*

	Quantum and Post-Quantum Cryptography
	Public-Key Cryptography
	The Quantum Alternative: Quantum Cryptography
	The Classical Alternative: Post-Quantum Cryptography

	Hamiltonian Simulation
	Matrix Exponentials
	The Differential Form of Schrödinger's Equation
	Simulating Quantum Mechanics with a Quantum Computer
	Matrix Encodings*
	BQP-Completeness*

	Post-Selection and Quantum Advantage
	Relativized Complexity Classes
	The Polynomial Hierarchy
	Post-Selection and Post-Selected Complexity Classes
	Weak Multiplicative Simulations and PH Collapse
	Weak Additive Simulations and PH Collapse*

